Меню

Управление по току с пропорциональным управлением

При этом способе управления переменная скважность ШИМ зависит от выходного напряжения и активного фильтра обратной связи

Рис. 12. ШИМ контроллер с управлением по току с пропорциональным управлением. Вариант с фиксированным и с регулируемым выходным напряжением.

В данном методе наблюдается нестабильность петли обратной при скважности выше 50% (появление генерации на частоте ½ Fswx, зависит от шума на Vin или Vout). Данный процесс хорошо изучен и проблема решается уменьшением усиления в петле обратной связи, что можно обеспечить двумя способами (рис.13):

  • добавлением пилообразного напряжения к Isense;
  • вычитанием пилообразного напряжения из выхода петлевого фильтра.

Рис.13. Добавление модуля формирования пилообразного напряжения (PRG) в ШИМ контроллер для устранения нестабильности петли обратной связи. Вариант с фиксированным и с регулируемым выходным напряжением.

Контроллеры Microchip для преобразователей энергии, как составную часть CIP имеют программируемый генератор пилообразного напряжения (Programmable Ramp Generator, PRG или Slope Compensation).

Модуль PRG позволяет формировать пилообразное напряжение с независимой регулировкой фронта и спада, в качестве запускающих сигналов могут использоваться различные внутренние и внешние сигналы.

Как работает инвертор?

ВЧ модуляцию, можно сделать тремя способами:

  • частотно-импульсным;
  • фазо-импульсным;
  • широтно-импульсным.

На практике применяется последний вариант. Это связано как с простотой исполнения, так и тем, что у ШИМ неизменна коммуникационная частота, в отличие от двух остальных способов модуляции. Структурная схема, описывающая работу контролера, показана ниже.

Структурная схема ШИМ-контролера и осциллограммы основных сигналов

Алгоритм работы устройства следующий:

Генератор задающей частоты формирует серию прямоугольных сигналов, частота которых соответствует опорной. На основе этого сигнала формируется UП пилообразной формы, поступающее на вход компаратора КШИМ. Ко второму входу этого устройства подводится сигнал UУС, поступающий с регулирующего усилителя. Сформированный этим усилителем сигнал соответствует пропорциональной разности UП (опорное напряжение) и UРС (регулирующий сигнал от цепи обратной связи). То есть, управляющий сигнал UУС, по сути, напряжением рассогласования с уровнем, зависящим как от тока на грузке, так и напряжению на ней (UOUT).

Данный способ реализации позволяет организовать замкнутую цепь, которая позволяет управлять напряжением на выходе, то есть, по сути, мы говорим о линейно-дискретном функциональном узле. На его выходе формируются импульсы, с длительностью, зависящей от разницы между опорным и управляющим сигналом. На его основе создается напряжение, для управления ключевым транзистором инвертора.

Процесс стабилизации напряжения на выходе производится путем отслеживания его уровня, при его изменении пропорционально меняется напряжение регулирующего сигнала UРС, что приводит к увеличению или уменьшению длительности между импульсами.

В результате происходит изменение мощности вторичных цепей, благодаря чему обеспечивается стабилизация напряжения на выходе.

Для обеспечения безопасности необходима гальваническая развязка между питающей сетью и обратной связью. Как правило, для этой цели используются оптроны.

ШИМ контроллер: принцип работы

ШИМ сигналом управляет ШИМ контроллер. Он управляет силовым ключом благодаря изменениям управляющих импульсов. В ключевом режиме транзистор может быть полностью открытым или полностью открытым. В закрытом состоянии через p-n-переход идет ток не больше нескольких мкА, то есть мощность рассеивания близка к нулю. В открытом состоянии идет большой ток, но так как сопротивление p-n-перехода мало, происходят небольшие теплопотери. Больше тепла выделяется в при переходе из одного состояния в другое. Однако благодаря быстроте переходного процесса в сравнении с частотой модуляции, мощность этих потерь незначительна.

Все это позволило разработать высокоэффективный компактный широтно импульсный преобразователь, то есть с малыми теплопотерями. Резонансные преобразователи с переключением в 0 тока ZCS позволяют свести теплопотери к минимуму.

Аналоговая ШИМ

В аналоговых ШИМ-генераторах управляющий сигнал формируется при помощи аналогового компаратора, когда на его инвертирующий вход подается пилообразный или треугольный сигнал, а на неинвертирующий — непрерывный модулирующий.

Выходные импульсы идут прямоугольной формы. Частота их следования соответствует частоте пилы, а длительность плюсовой части импульса зависит от времени, когда уровень постоянного модулирующего сигнала, идущего на неинвертирующий вход компаратора, выше уровня пилообразного сигнала, подающегося на инвертирующий вход. В период когда напряжение пилообразного сигнала будет превышать модулирующий сигнал — на выходе будет фиксироваться отрицательная часть импульса.

Во время когда пилообразный сигнал подается на неинвертирующий вход, а модулирующий — на инвертирующий, выходные прямоугольные импульсы будут положительными, когда напряжение пилы будет выше уровня модулирующего сигнала на инвертирующем входе, а отрицательное — когда напряжение пилы станет ниже сигнала модулирующего.

Цифровая ШИМ

Работая с цифровой информацией, микроконтроллер может формировать на выходах или 100% высокий или 0% низкий уровень напряжения. Но для эффективного управления нагрузкой такое напряжение на выходе нужно изменять. Например, когда осуществляется регулировка скорости вращения вала мотора или при изменении яркости светодиода.

Вопрос решают ШИМ контроллеры. То есть, 2-хуровневая импульсно-кодированная модуляция — это серия импульсов, характеризующаяся  частотой 1/T и либо шириной Т, либо шириной 0. Для их усреднения применяется передискретизация. При цифровой ШИМ прямоугольные подимпульсы, которыми и заполнен период, могут занимать любое место в периоде. Тогда на среднем значении сигнала за период сказывается лишь их количество. Так как процесс осуществляется на частоте в сотни кГц, можно добиться плавной регулировки. ШИМ контроллеры решают эту задачу.

Можно провести следующую аналогию с механикой. Когда маховик вращается при помощи двигателя, при включенном двигателе маховик будет раскручиваться или продолжать вращение, если двигатель выключен, маховик будет тормозить из-за сил трения. Однако, если движок включать/выключать на несколько секунд, вращение маховика будет держаться на определенной скорости благодаря инерции. Чем дольше период включения двигателя, тем быстрее раскрутится маховик. Аналогично работает и ШИМ модулятор. Так работают ШИМ контроллеры, в которых переключения происходят в секунду тысячи раз, и частоты могут достигнуть единиц мегагерц.

Использование ШИМ-контроллеров обусловлено их следующими преимуществами:

  • стабильностью работы;
  • высокой эффективностью преобразования сигнала;
  • экономией энергии;
  • низкой стоимостью.

Получить на выводах микроконтроллера (МК) ШИМ сигнал можно:

  • аппаратным способом;
  • программным способом.

В каждом МК есть встроенный таймер, генерирующий ШИМ импульсы на определённых выводах. Это аппаратный способ. Получение ШИМ сигнала при помощи команд программирования более эффективно за счет разрешающей способности и дает возможность задействовать больше выводов. Но программный способ вызывает высокую загрузку МК, занимая много памяти.

Два полюса лучше одного?

Давайте посмотрим на результаты работы двухполюсного фильтра для тех же двух частот среза. Следующая схема представляет собой RLC фильтр с критическим затуханием с fср ≈ 50 кГц:

Рисунок 12 – Схема моделирования в LTspice: генератор ШИМ сигнала и RLC фильтр нижних частот с частотой среза 50 кГцРисунок 13 – Пульсации напряжения, полученного на выходе RLC фильтра нижних частот с частотой среза 50 кГц

Как и ожидалось, это значительное улучшение по сравнению с однополюсным фильтром 50 кГц; размах пульсаций уменьшился с примерно 2,15 В до менее чем 900 мВ.

Вот схема для RLC фильтра с критическим затуханием с fср ≈ 1 кГц:

Рисунок 14 – Схема моделирования в LTspice: генератор ШИМ сигнала и RLC фильтр нижних частот с частотой среза 1 кГцРисунок 15 – Пульсации напряжения, полученного на выходе RLC фильтра нижних частот с частотой среза 1 кГц

Здесь мы почти устранили пульсации; если бы вы увеличили масштаб, то обнаружили бы, что размах пульсаций составляет всего около 500 мкВ. Но теперь у нас снова есть проблема со временем установления (вспомните компромисс № 1):

Рисунок 16 – Время установления напряжения на выходе RLC фильтра нижних частот с частотой среза 1 кГц

В этот момент вы можете подумать о том, как можно улучшить этот фильтр для достижения быстрого отклика в сочетании с низкими пульсациями. Возможно, вы заметили, что для предыдущей схемы требовалось 2,2 миллигенри – это огромная индуктивность. А что насчёт активного фильтра? Фильтр Саллена-Ки? Может быть, фильтр Саллена-Ки после RC фильтра? Подождите, почему бы просто не использовать фильтр с переключаемым конденсатором? Четыре полюса, или даже пять или семь… Это подводит нас ко второму компромиссу:

Компромисс № 2: Фильтры высшего порядка улучшают производительность, но они также увеличивают стоимость и сложность. Вместо того, чтобы тратить время и деньги на внедрение причудливого фильтра для посредственного ЦАП на базе ШИМ, мы просто должны использовать внешний ЦАП! На мой взгляд, вы не должны выходить за пределы одного полюса. Внешние ЦАП (и микроконтроллеры со встроенными ЦАП) настолько широко доступны, что ЦАП на базе ШИМ теряет свою привлекательность, если вы не можете удовлетворить свои требования к производительности с помощью RC фильтра.

Разновидности контроллеров

В фотоэлектрических схемах распространены несколько типов таких элементов. Они дифференцируются не только по стоимости, но и по алгоритмам работы, способам установления параметров тока и пр.

Типовая схема включения ШИМ-контроллера

Наиболее простые по конструкции всего лишь разрывают цепь и блокируют от нее источник, когда на ней достигается определенное напряжение, например, уровень 14,4 В. При падении до уровня 12-13 В блок питания снова собирает цепь для зарядки. В таком цикле степень зарядки АКБ составляет примерно 60%. Стабильный недозаряд приводит к образованию сульфатации на свинцовых пластинах и в скором времени выходе из строя источника питания.

Данный тип практически не выпускается серийно, но встречается у мастеров-самоделок. Они выпускают элементы для экономии по бросовым ценам, хотя в итоге экономия оказывается иллюзией из-за скорой поломки АКБ.

PWM регуляторы являются более продвинутой технологией и позволяют дозаряжать КБ до 100%. В процессе получается несколько стадий заряда батареи:

  • осуществляется подача на клеммы максимального тока, что позволяет АКБ потреблять его весь, поступающий от солнца на модули в данную минуту;
  • при шим заряде уровень напряжения достигает установленного параметра и осуществляется постоянная поддержка параметра, чтобы избежать газообразования в банках (сила тока медленно снижается);
  • происходит выравнивание, ведь для большинства АКБ является естественным получение заряда до уровня газообразования при выравнивании напряжения на всех емкостях с электролитом (очищаются пластины, и перемешивается жидкость внутри);
  • стабилизация и постепенное снижение напряжения проводится, когда батарея получает полный заряд, не допуская перегрева.

Схема с динамическим источником питания и интегрированным высоковольтным пусковым полевым транзистором

Производители предлагают свои контроллеры даже со специальными информативными элементами:

  • световой индикацией;
  • жидкокристаллическими экранами;
  • многофункциональными мониторами.

В определенных моделях встречается функционал, позволяющий определить уровень заряда АКБ. За счет этой опции можно настроить работу под конкретную батарею, пролонгировав ее период эксплуатации.

Чтобы проконтролировать максимально достоверно SOC, необходимо мониторить несколько циклов зарядки батареи и провести самостоятельный расчет по достаточно громоздким формулам.

uc3845 — описание, принцип работы, схема включения

uc3845 — это универсальный микрочип для однотактных преобразователей напряжения. Используется в прямо- и обратноходовых преобразователях. Работает в режиме реле и полноценного ШИМ стабилизатора напряжения с ограничениями по току. Во время перегрузки микрочип переходит в режим стабилизации тока. Чтобы обеспечить стабилизацию напряжения, необходимы дополнительные резисторы и транзистор.

Принцип работы ШИМ uc3845 основан на контроле среднего значения выходного напряжения и максимального значения тока. Если уменьшается нагрузка, выходное напряжение увеличивается. Амплитуда на токоизмерительном резисторе уменьшается, длительность импульса уменьшается до восстановления баланса между напряжением и током.

Схема включения микросхемы (8 выводов) uc3845 отображена на рисунке 4.

Рисунок 4. Схема включения микрочипа uc3845

Maxim ICM7555 MAX998

Budge Ing, Maxim Integrated

EDN

Генераторы широтно-импульсно модулированных сигналов (ШИМ) интегрированы практически в любое устройство импульсного преобразования мощности. В статье будут показаны два способа реализации автономных аналоговых ШИМ генераторов. При необходимости улучшить характеристики генераторов их можно модифицировать, добавив в каждый по одной микросхеме.

Устройства, состоящие из одной микросхемы, могут быть сделаны по двум схемам. В одной используется интегральный таймер ICM7555, а в другой – маломощный компаратор MAX998. Мы рассмотрим обе схемы.

Схема 1: использование маломощного таймера в качестве ШИМ генератора

Таймер ICM7555 включается согласно Рисунку 1.
 

Рисунок 1. ШИМ генератор и таймер на одной микросхеме.

На Рисунке 1 ширина импульса на выводе 3 модулируется управляющим напряжением VCONTROL, приложенным к выводу 5. Лабораторные измерения схемы были выполнены при напряжении питания 5 В. На Рисунках 2…5 показаны выходные ШИМ сигналы при трех различных управляющих напряжениях: 1 В, 2 В и 4 В. Конденсатор C1 заряжается напряжением источника питания VSUPPLY до уровня VCONTROL и разряжается от VCONTROL/2 до уровня земли. При отсутствии внешнего управляющего напряжения напряжение VCONTROL составляет 2/3 от VSUPPLY.

Рисунок 2. Выход ШИМ генератора при управляющем напряжении,
равном 1 В.
Рисунок 3. Выход ШИМ генератора при управляющем напряжении,
равном 2 В.
Рисунок 4. Выход ШИМ генератора при отсутствии управляющего напряжения.
Рисунок 5. Выход ШИМ генератора при управляющем напряжении,
равном 4 В.

Представленные осциллограммы иллюстрируют влияние управляющего напряжения, приложенного к выводу 5, на изменения пороговых напряжений двух внутренних компараторов. В отсутствие управляющего напряжения (Рисунок 4) пороги заряда и разряда C1 определяются внутренней структурой таймера и составляют 1/3 и 2/3 от напряжения питания. Этими порогами, равноудаленными от напряжения питания и земли, устанавливается коэффициент заполнения равный 50%. При изменении управляющего напряжения изменяется время заряда C1, за которое напряжение на конденсаторе должно достичь VCONTROL, и время разряда, в течение которого напряжение спадает до VCONTROL/2. Этот процесс приводит к модуляции ширины выходного импульса.

Время заряда определяется формулой

где

R = R1,
C =C1.

Время разряда можно вычислить из выражения

Схема 2: генератор ШИМ с компаратором

Компаратор MAX998 включается согласно Рисунку 6.

Рисунок 6. ШИМ генератор и компаратор.

Ширина выходного импульса модулируется под управлением напряжения, приложенного к R1. При напряжении питания 5 В были проведены лабораторные измерения, результаты которых представлены на Рисунках 7…9, демонстрирующих формы выходных сигналов ШИМ при управляющем напряжении, равном 1 В, 2 В и 4 В.

Рисунок 7. Выход ШИМ генератора при управляющем напряжении,
равном 1 В.
Рисунок 8. Выход ШИМ генератора при управляющем напряжении,
равном 2 В.
Рисунок 9. Выход ШИМ генератора при управляющем напряжении,
равном 3 В.

Приложенное к микросхеме MAX998 управляющее напряжение устанавливает пороговые напряжения, определяющие моменты начала заряда и разряда C1. Верхний порог равен

а нижнее пороговое напряжение равно VCONTROL/2.
Время заряда можно найти из формулы

Время разряда описывается выражением
 

где

R = R1,
C =C1.

Варианты ШИМ генераторов на двух микросхемах

Необходимо отметить, что управляющее напряжение в обеих схемах изменяет не только длительность импульсов, но и их частоту. Добавив в каждую из схем по одному компаратору, можно зафиксировать частоту выходных сигналов.

В Схеме 1 пилообразное напряжение с вывода 6 необходимо подать на вход второго компаратора. Это напряжение будет задавать коэффициент заполнения выходных импульсов постоянной частоты. Аналогично, в Схеме 2 на второй компаратор подается пилообразное напряжение с инвертирующего входа MAX998.

Причины и области применения ШИМ

Принцип широтно-импульсной модуляции используется в регуляторах частоты вращения мощных асинхронных двигателей. В этом случае модулирующий сигнал регулируемой частоты (однофазный или трехфазный) формируется маломощным генератором синусоиды и накладывается на несущую аналоговым способом. На выходе получается ШИМ-сигнал, который подается на ключи потребной мощности. Дальше можно пропустить получившуюся последовательность импульсов через фильтр низкой частоты, например через простую RC-цепочку, и выделить исходную синусоиду. Или можно обойтись без нее – фильтрация произойдет естественным образом за счёт инерции двигателя. Очевидно, что чем выше частота несущей, тем больше форма выходного сигнала близка к исходной синусоиде.

Возникает естественный вопрос – а почему нельзя усилить сигнал генератора сразу, например, применением мощных транзисторов? Потому что регулирующий элемент, работающий в линейном режиме, будет перераспределять мощность между нагрузкой и ключом. При этом на ключевом элементе впустую рассеивается значительная мощность. Если же мощный регулирующий элемент работает в ключевом режиме (тринистор, симистор, RGBT-транзистор), то мощность распределяется во времени. Потери будут намного ниже, а КПД – намного выше.

В цифровой технике особой альтернативы широтно-импульсному регулированию нет. Амплитуда сигнала там постоянна, менять напряжение и ток можно лишь промодулировав несущую по ширине импульса и впоследствии усреднив её. Поэтому ШИМ применяют для регулирования напряжения и тока на тех объектах, которые могут усреднять импульсный сигнал. Усреднение происходит разными способами:

  1. За счет инерции нагрузки. Так, тепловая инерция термоэлектронагревателей и ламп накаливания позволяет объектам регулирования заметно не остывать в паузах между импульсами.
  2. За счёт инерции восприятия. Светодиод успевает погаснуть от импульса к импульсу, но человеческий глаз этого не замечает и воспринимает как постоянное свечение с различной интенсивностью. На этом принципе построено управление яркостью точек LED-мониторов. Но незаметное мигание с частотой несколько сот герц все же присутствует и служит причиной усталости глаз.
  3. За счет механической инерции. Это свойство используется при управлении коллекторными двигателями постоянного тока. При правильно выбранной частоте регулирования двигатель не успевает затормозиться в бестоковых паузах.

Поэтому ШИМ применяют там, где решающую роль играет среднее значение напряжения или тока. Кроме упомянутых распространенных случаев, методом PWM регулируют средний ток в сварочных аппаратах и зарядных устройствах для аккумуляторных батарей и т.д.

Если естественное усреднение невозможно, во многих случаях эту роль на себя может взять уже упомянутый фильтр низкой частоты (ФНЧ) в виде RC-цепочки. Для практических целей этого достаточно, но надо понимать, что без искажений выделить исходный сигнал из ШИМ с помощью ФНЧ невозможно. Ведь спектр PWM содержит бесконечно большое количество гармоник, которые неизбежно попадут в полосу пропускания фильтра. Поэтому не стоит строить иллюзий по поводу формы восстановленной синусоиды.

Очень эффективно и эффектно управление методом ШИМ RGB-светодиодом. Этот прибор имеет три p-n перехода – красный, синий, зеленый. Изменяя раздельно яркость свечения каждого канала, можно получить практически любой цвет свечения LED (за исключением чистого белого). Возможности по созданию световых эффектов с помощью PWM безграничны.

Наиболее употребительная сфера применения цифрового сигнала, промодулированного по длительности импульса – регулирование среднего тока или напряжения, протекающего через нагрузку. Но возможно и нестандартное использование этого вида модуляции. Все зависит от фантазии разработчика.

Что такое импульсный блок питания и где применяется

Преобразователи напряжения с 12 на 220 вольт

Что такое частотный преобразователь, основные виды и какой принцип работы

Что такое импульсное реле — схема подключения для управления освещением

Режимы работы, описание характеристик и назначение выводов микросхемы NE555

Что такое триггер, для чего он нужен, их классификация и принцип работы

Выходное управляющее напряжение (OUT)

Количество выводов микросхемы определяется её конструкцией и принципом работы. Не всегда удается сразу разобраться в сложных терминах, но попробуем выделить суть. Существуют микросхемы на 2-х выводах, управляющие двухтактными (двухплечевыми) каскадами (примеры: мост, полумост, 2-тактный обратный преобразователь). Существуют и аналоги ШИМ-контроллеров для управления однотактными (одноплечевыми) каскадами (примеры: прямой/обратный, повышающий/понижающий, инвертирующий).

Помимо этого, выходной каскад может быть по строению одно- и двухтактным. Двухтактный используется в основном для управления полевым транзистором, зависящим от напряжения. Для быстрого закрытия необходимо добиться быстрой разрядки емкостей «затвор — исток» и «затвор — сток». Для этого как раз и используется двухтактный выходной каскад контроллера, задачей которого является обеспечение замыкание выхода на общий кабель, если требуется закрыть полевой транзистор.

ШИМ-контроллеры для источников питания большой мощности могут иметь также элементы управления выходным ключом (драйверы). В качестве выходных ключей рекомендуется использовать IGBT-транзисторы.

Как правильно сделать поворот

Схема расчета лестничной конструкции для изготовления своими руками.

У лестничной конструкции поворот можно сделать тремя способами. Один из них для винтовой лестницы, которая представляет собой один большой поворот. Она очень компактна и занимает мало площади, но обладает достаточно большой крутизной. Так как за один оборот на 360 ° лестница должна подняться на два метра как минимум, то пролет должен иметь от 13 до 15 ступенек. Из-за конструкции ширина проступи должна быть небольшой, поэтому ступени у винтовой лестницы узкие и высокие. Ее лучше всего устанавливать либо на чердаке, либо в хозяйственном помещении.

Маршевые лестницы нужно поворачивать на 90 ° или 180 ° с помощью площадок, а можно с помощью специальных ступенек в виде трапеции. Горизонтальную лестничную площадку устраивают в том случае, если позволяет площадь. Такая лестница состоит из прямых элементов и имеет классический вид. На самой площадке можно сделать окно, что придаст изящность и дополнительное освещение днем. Если такой возможности нет, то поворот лестничной конструкции нужно сделать непосредственно ступенями. В этом случае в определенном месте, можно и не в середине, следует начать устанавливать проступи в виде трапеции, которые задают поворот лестнице на 15 ° либо 30 ° на каждую ступеньку. В результате они поворачивают ее на нужный угол.

Диагностика неисправностей

Одна из часто встречающихся проблем — пробой ключевых транзисторов. Результаты можно увидеть не только при попытке запуска устройства, но и при его обследовании с помощью мультиметра.

Кроме того, существуют и другие неисправности, которые несколько сложнее обнаружить. Перед тем как проверить ШИМ-контроллер непосредственно, можно рассмотреть самые распространенные случаи поломок. К примеру:

  • Контроллер глохнет после старта — обрыв петли ОС, перепад по току, проблемы с конденсатором на выходе фильтра (если таковой имеется), драйвером; возможно, разладилось управление ШИМ-контроллером. Надо осмотреть устройство на предмет сколов и деформаций, замерить показатели нагрузки и сравнить их с типовыми.
  • ШИМ-контроллер не стартует — отсутствует одно из входных напряжений или устройство неисправно. Может помочь осмотр и замер выходного напряжения, в крайнем случае, замена на заведомо рабочий аналог.
  • Напряжение на выходе отличается от номинального — проблемы с петлей ООС или с контроллером.
  • После старта ШИМ на БП уходит в защиту при отсутствии КЗ на ключах — некорректная работа ШИМ или драйверов.
  • Нестабильная работа платы, наличие странных звуков — обрыв петли ООС или цепочки RC, деградация емкости фильтра.

Необходимость установки

Обязательно используются контроллеры для схем, в которых присутствуют свинцово-кислотные АКБ. Это связано с тем, что такие элементы питания негативно воспринимают как перезаряд, так и значительное разряжение. В первом случае может произойти быстрый выход из строя батареи за счет закипания электролита или даже взрыва банок с ним. Во втором случае процесс приводит к разрушению пластин.

Нередко для импульсных источников питания или в источники бесперебойного питания встраивают PWM-элементы. Встречаются они и в инверторах.

Интегральный ШИМ-контроллер с токовым режимом управления в компактном корпусе TSOP-6

Обычно разъединение происходит при достижении двенадцативольтовым аккумулятором уровня 10,5 или 11 В. В таком случае за 10 часов непрерывной работы падение емкости составит со 100% до примерно 20%. В процессе более быстрого разряжения емкость будет уменьшаться.

В определенных условиях допускается коррекция напряжения отключения во время изготовления или настроечного процесса. Однако, на прилавках доминирует не регулятор напряжения, а прибор с типовым уровнем выходных параметров.

Ориентироваться по затратам поможет таблица:

Блок Период эксплуатации, лет Стоимость (% от стоимости оборудования)
Солнечный потребитель 25-30 20-30%
Контроллер заряда 10 2-5%
АКБ 2-6 45-60%
Дополнительное оборудование более 10 10%

Исходя из пропорций затрат, очевидно, что PWM-элементы не являются большой статьей затрат в схеме. При этом они играют важную роль в процессе обеспечения эффективности системы, продлевая срок службы остального оборудования.

Заключение

Применение импульсных БП для обеспечения устройств электрической энергией требуемого номинала продолжает оставаться важной частью рынка потребительской и маломощной промышленной электроники. В этом секторе они уверенно держат лидерство по сравнению с БП, построенными по традиционной схеме с трансформатором промышленной частоты

Причины такого успеха кроются в сочетании нескольких важных факторов: высокого КПД, снижения габаритов, веса, а главное — стоимости, при одновременном расширении возможностей блока питания (вспомним хотя бы о способности импульсников как к повышению, так и к понижению напряжения, а равно и о «всеядности» в плане параметров входного напряжения). И это при том, что импульсные БП получаются сложнее (в функциональном плане), чем их трансформаторные аналоги.

С другой стороны, поскольку «сердцем» такого преобразователя является микросхема ШИМ-контроллера, можно уверено сказать, что в настоящий момент и в ближайшее время приборы такого типа будут совершенствоваться и развиваться. Это видно хотя бы из количества работ, вышедших на эту тему за последний год в различной технической периодике. Развитие возможно как в плане характеристик устройств, так и путем увеличения сервисных функций и повышении степени интеграции компонентов, а соответственно — упрощения схемы применения (тут можно вспомнить о контроллерах с интегрированными ключами и питающихся от напряжений промышленного уровня). Неизбежно, видимо, и улучшение ценовой политики на фоне сильной конкуренции.

•••

Заключение. ШИМ в дисплеях — что это, добро или зло?

Использование ШИМ производителями понять можно. Упрощение схемотехники, энергоэффективность, меньшая себестоимость… Проблема в том, что в данном случае воздействие производится на одну из самых уязвимых частей человеческого организма – глаза. Учитывая, что все больше и больше времени мы проводим перед экраном, очень хотелось бы, чтобы дисплеи были как можно менее вредными.

К счастью, производители ничего не имеют против того, чтобы предлагать экраны, в которых ШИМ либо отсутствует в принципе, либо работает на высоких частотах порядка десятков, а то и сотен килогерц. Беда в том, что наличие или отсутствие мерцания далеко не всегда указывается.

Если в случае с обычными мониторами сейчас можно встретить маркировку «Flicker-Free», то, когда речь заходит о ноутбуках, что за матрица стоит и в каком режиме она работает – загадка для посвященных. Узнать это можно только из обзоров или проведя самостоятельно примитивный тест на определение наличия ШИМ («карандашный» тест или при помощи обычного бытового вентилятора).

Я стараюсь сводить в таблицу информацию о ноутбуках с хорошими экранами, где помимо прочего еще указывается наличие ШИМ для управления яркостью. Выбирая ноутбук, все же не забывайте про глаза, и при возможности отдавайте предпочтение моделям, в которых отсутствует мерцание, благо их становится все больше и больше.

Подведём итог ремонта

По нынешним меркам кризиса и роста цен, кто-нибудь, житель крупных городов, имеющий высокую по российским меркам зарплату, может скажет что сэкономлена не бог весть какая сумма, больше времени своего потрачено было. Но если вернуться к тому, что сейчас на дворе очередной кризис, экономия данной суммы для большинства людей умеющих держать в руках паяльник, проводить диагностику приборов и умеющих считать деньги, вряд ли была бы лишней, пусть даже для сборки своего личного системного блока. А раз так – то люди, имеющие опыт и практические знания в области электроники, уже имеют плюс по сравнению с людьми, которые этих знаний не имеют, а соответственно не имеют и данной возможности. Всем удачных ремонтов, автор статьи AKV.

Оцените статью
Рейтинг автора
5
Материал подготовил
Илья Коршунов
Наш эксперт
Написано статей
134
Добавить комментарий