Соединение в треугольник, звезду и зигзаг

Виды трансформаторов тока

Данные электротехнические устройства классифицируются по нескольким характеристикам. В зависимости от назначения токовые трансформаторы могут быть:

  • защитными – снижающими параметры тока для предотвращения выхода из строя потребляющих устройств;
  • измерительными – через которые подключаются средства измерения, в том числе электросчётчики;
  • промежуточными – устанавливаемыми в системы релейной защиты;
  • лабораторными – используемыми для исследовательских целей, обладающими низкой погрешностью измерения, нередко – с несколькими коэффициентами трансформации.

Также читайте: Согласующий трансформатор Учитывая характер условий эксплуатации, различают трансформаторы:

  • для наружной установки – защищённые от воздействия атмосферных факторов, которые можно использовать на открытом воздухе;

    Три трансформатора тока для 3-х фаз(А, B? C)

  • внутренние – применяемые внутри помещений;

    ТТ для установки внутри помещений

  • встроенные – расположенные внутри электрических приборов и являющиеся их составной частью(3 ТА для каждой фазы показаны стрелкой).

    Встроенные ТТ

В зависимости от исполнения первичных обмоток различают устройства:

  • одновиткового исполнения;
  • многовитковые;
  • шинные.

С учётом способа установки их подразделяют на следующие типы:

  • проходной;
  • опорный.

По числу ступеней изменения тока выделяют трансформаторы:

  • одноступенчатого,
  • двухступенчатого (каскадного) типа.

Устройства, в зависимости от величины напряжения, на которое они рассчитаны делят на предназначенные для работы в условиях более и менее 1000 В.

Для изготовления сердечника применяется специальная трансформаторная сталь. Изоляция выполняется сухой (бакелитовой, фарфоровой), обычной или бумажно-масляной.

Общие вопросы об электрических щитах

На данный момент существует два типа электрических щитов. Первый – старый и уходящий в небытие – щит с предохранителями (или пробками), которые были одноразовыми, и их необходимо было выкручивать для замены, и современные устройства, оснащенные система

ми пакетных выключателей (автоматами). Разумеется, использовать лучше современные технологии, так как они превосходят устаревшие системы в плане надежности, безопасности и долговечности, да и места занимают меньше, но не они не ремонтируются. В магазинах можно купить щитки как уже со встороенными автоматическими выключателями, так и пустые «боксы» и уже самому устанавливать необходимое оборудование.

Электрический щиток в квартире, схема электропитания которой может быть разнообразной, а количество потребителей и их мощность со временем может вырасти, должен выбираться с дополнительными местами под автоматические выключатели.

Вводной автомат, обычно способный одновременно отключить и «фазу» и «ноль», должен выбираться исходя из общей нагрузки квартиры. Величина его токовых и защитных характеристик выше, чем у вспомогательных автоматов. Как правило, для 2-х и 3-х комнатных квартир подойдет автомат на 32-40 ампер (порядка 7кВт), если нагрузки меньше, автомат можно взять на 25 или 16 ампер.

Что касательно вспомогательных автоматов, устанавливаемых на «фазу», то они необходимы для защиты отдельного помещения или устройства. Специалисты советуют ставить такой автомат на каждого потребителя, чья мощность превышает 1.5кВт (нагревательные баки, стиральные машины и так далее). Таблица примерных нагрузок электроприборов расположена ниже.

Таблица 1 – примерные мощности бытовых устройств.

Распределение мощности УЗО

УЗО (устройство защитного отключения), чрезвычайно полезное устройство, если необходимо повысить уровень электрической защиты в разы. Реагируют на малейшие утечки токов и напряжений, мгновенно обесточивая цепь. При наличии в доме ванных и детских комнат, снабженных электроприборами, выбор УЗО будет играть особо важную роль.

Чем отличаются соединения звездой и треугольником

Питание асинхронного электродвигателя происходит от трехфазной сети с переменным напряжением. Такой двигатель, при простой схеме подключения, оснащен тремя обмотками, расположенными на статоре. Каждая обмотка имеет сдвиг друг относительно друга на угол 120 градусов. Сдвиг на такой угол предназначен для создания вращения магнитного поля.

Концы фазных обмоток электродвигателя выведены на специальную «колодку». Выполнено это с целью удобства соединения. В электротехнике используют основных 2 метода подключения асинхронных электродвигателей: методом соединения «треугольника» и метод «звезды». При соединении концов применяют специально предназначенные для этого перемычки.

Навивка спирали

Определение токов устройства

При определении тока первичной обмотки следует учитывать потери, а также намагничивающий ток трансформатора, относительная величина которых в маломощных силовых трансформаторах весьма значительна. Величины токов могут быть определены по следующей формуле:

где U1 и U2 – напряжения обмоток по заданию;

P2 – мощность вторичной обмотки по заданию;

cos φ2 – коэффициент мощности нагрузки по заданию;

η – коэффициент полезного действия (КПД) трансформатора.

Выбор индукции в стержне сердечника и плотности тока в проводах обмоток трансформатора – допустимая величина индукции в стержне и ярме сердечника трансформатора определяется выбранным значением намагничивающего тока, мощностью, частотой, типом трансформатора, числом стыков в сердечнике и материалом последнего.

В чем разница подключений типа звезда и треугольник?

Принципиальная разница между звездочкой и треугольным соединением заключается в том, что при использовании одной питающей электрической сети имеется возможность создавать разные параметры напряжения на подсоединяемом устройстве.

Чаще всего применяется объединение обмоточных элементов по типу звезды. Это оправдано щадящими условиями последующей эксплуатации электрического приводного механизма либо трансформаторного устройства.Использование типа соединения по треугольному принципу оправдано в случаях включения в трехфазную сеть механизмов внушительной мощности, имеющих большие пусковые токи.

Таким образом, к основным достоинствам соединения обмоточных элементовпо типу звезды можно отнести следующие свойства данного типа коммутации:

  • снижение мощностной характеристики в целях повышения надежности эксплуатируемого оборудования;
  • устойчивость и стабильность режима безостановочной работы привода;
  • возможность плавного запуска электрического приводного механизма;
  • возможность выдерживания кратковременной перегрузки;
  • отсутствие перегрева корпуса оборудования.

Важно! Некоторое электромеханическое и электротехническое оборудование имеет в своей сборке внутреннее соединение концов обмоток в звездочку. Такие устройства не предназначены для эксплуатации при иных способах соединения обмоток

Для подключения к электрической сети у них имеется просто три вывода, представляющих собой начала обмоток. Описанное оборудование является простым в монтаже, который, в свою очередь, не требует особых электромонтажных навыков.

В то же время у соединения обмоток по типу треугольника можно выделить следующие преимущества:

  • повышение мощностной характеристики;
  • применение пускового реостата;
  • больший вращающий момент электропривода;
  • увеличенные тяговые параметры.

Как передается трехфазный ток

Первичным источником питания в большинстве случаев является электрическая сеть. Ее напряжение представлено в виде синусоиды с частотой 50 Гц. Однако в тех случаях, когда линии электропередачи обладают большой протяженностью, происходит излучение передаваемой энергии в окружающее пространство, что приводит к дополнительным потерям. Поэтому в цепях электропитания высокой мощности применяется трехфазное напряжение.

Для того чтобы уменьшить излучение, сумма напряжений на всех трех фазах в любое время должна быть равна нулю. С этой целью производится сдвиг синусоидального напряжения по фазе в каждом проводе относительно друг друга на 120 градусов. В таком состоянии передача электроэнергии может осуществляться в двух вариантах: с помощью четырех или трех проводов линии передачи. Условные схемы каждого варианта отображены на рисунке.

Четырехпроводная линия позволяет выдавать потребителю два вида напряжения: фазное (220 В) и линейное (380 В). Трехпроводная схема позволяет выдавать лишь линейные напряжения. Формирование линейного напряжения описывается с помощью векторной диаграммы напряжений фаз. При положительном чередовании фаз, они условно увеличиваются по часовой стрелке. Для соединения обмоток трехфазных трансформаторов используются два основных способа – звезда и треугольник.

Подключение звезда и треугольник — в чем разница

Для работы электрического прибора, двигателя, трансформатора в трехфазной сети необходимо соединить обмотки по определенной схеме. Наиболее распространенными схемами соединения являются треугольник и звезда, хотя могут применяться и другие способы соединения.

Что представляет собой соединение обмоток звездой?

Трехфазный двигатель или трансформатор имеет 3 рабочих, независимых друг от друга обмоток. Каждая обмотка имеет два вывода — начало и конец. Соединение «звезда» подразумевает собой, что все концы трех обмоток соединяются в один узел, часто называемый нулевой точкой.

Отсюда выходит и понятие — нулевая точка.

Начало каждой обмотки соединяются непосредственна с фазами питающей сети. Соответственно начало каждой обмотки соединяется с одной из фаз А, В, С.

Между любыми двумя началами обмоток прилаживается фазное напряжение питающей сети, зачастую 380 или 660 В.

Что представляет собой соединение обмоток в треугольник?

Соединение обмоток в треугольник заключается в соединении конца каждой обмотки с началом следующей. Конец первой обмотки, соединяется с началом второй. Конец второй — с начало третей.

Конец третей обмотки создает электрический контур, поскольку замыкает электрическую цепь.

При таком соединении к каждой обмотки прилаживается линейное напряжение, обычно равное 220 или 380 В.

Такое соединение физически реализуется с помощью металлических перемычек, которые должны быть предусмотрены заводской комплектацией электрического оборудования.

Разница между соединением обмотки в треугольник и звезду

Основная разница заключается в том, что, используя одну питающую сеть, можно достигать разных параметров электрического напряжения и тока в приборе или аппарате. Конечно, данные способы соединения отличаются реализацией, но важна именно физическая составляющая отличия.

Что такое звезда и треугольник в трансформаторе?Что такое звезда и треугольник в трансформаторе?

Наиболее часто применяется соединение обмоток в звезду, что объясняется щадящим режимом для электрического привода или трансформатора. При соединении обмоток в звезду, ток протекающий по обмоткам имеет меньшие значение нежели при соединении в треугольник. В тот момент, как напряжение больше на величину корня из 1,4.

Применение способа соединения треугольник, зачастую используется в случаях мощных механизмов и больших пусковых нагрузок.

Имея большие показатели тока, протекающего по обмотки, двигатель получает большие показатели ЕДС самоиндукции, что в свою очередь гарантирует больший вращающий момент.

Важно

Имея большие пусковые нагрузки и одновременно используя схему соединения звезда, можно нанести урон двигателю. Это связано с тем, что двигатель имеет меньшие значение тока, что приводит к меньшим показателям величины вращающегося момента.

Момент пуска такого двигателя и выход его на номинальные параметры может быть продолжительным, что может привести к тепловому воздействию тока, которые во время коммутации может превышать номиналы тока в 7-10 раз.

Преимущества соединения обмоток в звезду

Основные преимущества соединения обмоток в звезду заключаются в следующем:

  • Понижения мощности оборудования с целью повышения надежности.
  • Устойчивый режим работы.
  • Для электрического привода такое соединение дает возможность плавного пуска.

Некоторое электрическое оборудование, которое не предназначены для работы на других способах соединения, имеет внутренне соединение концов обмоток. На клеммник выводится лишь три вывода, которые представляют собой начало обмоток. Такое оборудование легче в подключении и может монтироваться в отсутствии грамотных специалистов.

Основными преимуществами соединения обмоток в треугольник являются:

  1. Повышения мощности оборудования.
  2. Меньшие пусковые токи.
  3. Большой вращающийся момент.
  4. Увеличенные тяговые свойства.

Оборудование с возможностью переключения типа соединения со звезды на треугольник

Зачастую электрическое оборудование имеет возможность работать как на звезде, так и на треугольнике. Каждый пользователь должен самостоятельно определить необходимость соединения обмоток в звезду или треугольник.

В особо мощных и сложных механизмах, может применяться электрическая схема с комбинированием треугольника и звезды. В таком случае, в момент пуска, обмотки электрического двигателя соединяются в треугольник.

После выхода двигателя на номинальные показатели, с помощью релейно-контакторной схемы треугольник переключается на звезду.

Таким способом достигается максимальная надежность и продуктивность электрической машины, без риска нанести ей урон или вывести её из строя.

Посмотрите так-же интересное видео на эту тему:

Почему в нулевой провод не разрешается включать предохранитель?

Допустим, в начале стояка установлен предохранитель, но он перегорел (на рисунок 5, г он перечеркнут). В этом случае четырехпроводная схема превращается в трехпроводную со всеми рассмотренными выше недостатками, присущими ей при неравномерной нагрузке фаз.

Согласно Правилам устройства электроустановок (ПУЭ) в начале стояка в нулевой провод не разрешается включать предохранитель (рубильник, автомат). На этажных щитках лестничных клеток, откуда питание расходится по квартирам, предохранители (автоматы) устанавливают только в фазном проводе (рисунок 5, д) либо предохранителей вообще нет. В этом случае, однако, обязателен выключатель В или автомат А, которым вся квартира может быть отсоединена от стояка.

Рисунок 6. Установочный автомат типа ПАР–10 (предохранитель автоматический резьбовой на ток 10 А), ввертывающийся в предохранитель вместо пробки.1 – кнопка для включения; 2 – кнопка для отключения. На корпусе автомата написаны его номинальные данные: предельное напряжение сети, например 250 В (эти же автоматы пригодны для сетей 127 и 220 В), и номинальный ток, например 10 А. Номинальный ток может проходить через автомат неограниченно долго. Но при перегрузке (превышении номинального тока) автомат отключается, причем тем скорее, чем перегрузка больше. Короткое замыкание автомат отключает мгновенно.

Но в квартирах, где к предохранителям П имеют доступ лица, не имеющие специальной электротехнической подготовки, из-за чего не исключено недостаточно хорошее состояние предохранителей, их обязательно устанавливают на обоих проводах, чтобы повысить пожарную безопасность. Не противоречит ли это сказанному выше о недопустимости включать предохранитель в нулевой провод? Нисколько. Потому что нагрузка в пределах квартиры является однофазной, так как по обоим проводам и предохранителям проходит один и тот же ток. Значит перегорание предохранителя в любом проводе (фазном или нулевом – безразлично) не может привести к перекалу ламп: они просто погаснут.

Предохранители в осветительных сетях уступают место установочным автоматам благодаря тому, что автоматы обеспечивают более совершенную защиту и не требуют замены. В новых домах предохранители не применяют. В старых квартирах вместо пробок в предохранители можно установить автоматы (рисунок 6) с резьбовым цоколем, не производя каких-либо монтажных работ.

Подключение трёхфазного двигателя к однофазной сети

В этой статье рассмотрим подключение трёхфазного асинхронного двигателя к однофазной сети с помощью фазосдвигающего конденсатора, а также расчёт ёмкости пускового и рабочего конденсаторов, подключение трёхфазного двигателя «звездой» и «треугольником».

 Самый простой пуск трёхфазного двигателя в однофазной цепи возможен с помощью фазосдвигающего конденсатора, включённого в третью обмотку двигателя. КПД(коэффициент полезного действия) двигателя в этом случае будет около 60% (по сравнению с трёхфазным включением).

Важно

При пуске маломощного асинхронного электродвигателя ( до 500 Вт), или при пуске двигателя без нагрузки на его вал, можно ограничится использованием только, так называемого, рабочего конденсатора.

При пуске более мощных двигателей нужно использовать ещё и пусковой конденсатор, необходимый для разгона двигателя.

Схема включения двигателя в однофазную сеть

Подключение трёхфазного двигателя

В схеме обозначено:

  • FU1, FU2 — предохранители.
  • S1 — двухполюсный выключатель.
  • S2 — переключатель направления движения вала двигателя (реверс).
  • S3 — кнопка подключения пускового конденсатора (разгон двигателя).
  • Сп — пусковой конденсатор.
  • Ср — рабочий конденсатор.
  • R1 — разрядный резистор.
  • М — электродвигатель.

После включения выключателя S1 необходимо сразу нажать кнопку S3, после разгона двигателя (2-3 сек) кнопку отпустить.

Расчёт элементов схемы включения двигателя

Ёмкость рабочего конденсатора для данной схемы (соединение обмоток электродвигателя «треугольником») рассчитывается по следующей формуле:

Ср = 4800*I/U,  где

Ср — ёмкость рабочего конденсатора в мкФ;I — ток электродвигателя, А;U — сетевое напряжение(220 В).

При соединении обмоток электродвигателя «звездой» ёмкость рабочего конденсатора определяется по формуле:

Ср = 2800*I/U , обозначения те же.

Если неизвестен ток электродвигателя, но известна мощность, то ток можно рассчитать по формуле:

I = P/(√3*U*ɳ*cosφ) , где

P — мощность электродвигателя, Вт;ɳ — КПД электродвигателя;cosφ — коэффициент мощности.

Приблизительно можно принять ɳ=0,6, cosφ = 0,8. Тогда формула упростится и примет вид:

I = P/(0,83*U).

Ёмкость пускового конденсатора должна быть в 2-3 раза больше ёмкости рабочего.

Нужную ёмкость конденсатора можно собрать из нескольких, имеющихся в наличии конденсаторов, как это сделать описано здесь. Лучше всего применять металлобумажные или плёночные конденсаторы. Рабочее напряжение конденсаторов не ниже 300В.

  В некоторых статьях предлагают использовать электролитические конденсаторы, соединив пару конденсаторов минусовыми выводами и зашунтировав их диодами.

Я не рекомендую этого делать, так как при выходе из строя диода (при его электрическом пробое), через электролитический конденсатор потечёт переменный ток и он скорее всего взорвётся из-за нагрева.

Совет

Разрядный резистор R1 служит для разряда пускового конденсатора после его отключения. Можно обойтись и без него, но тогда следует помнить, что на устройстве может остаться опасное напряжение, даже после его выключения. Можно взять резистор сопротивлением 0,5 — 1 мОм, на мощность рассеяния не ниже 0,5 Вт.

Все выключатели и предохранители должны выдерживать рабочий ток электродвигателя.

Советы: лучше всего использовать соединение «треугольником», при соединении обмоток «звездой» значительная часть мощности двигателя теряется.

На шильдике двигателя указывается схема соединения обмоток, возможность её изменения и  рабочее напряжение обмоток. Например:  ∆/Ү  220/380 обозначает, что обмотки электродвигателя могут быть подсоединены либо «треугольником» на 220 В, либо «звездой» на напряжение 380В.

Обозначение Ү  380 — говорит о том, что обмотки подсоединены по схеме «звезда» и рассчитаны на 380 В и в распредкоробку двигателя выведено всего три провода. Тут придётся подключать по схеме «звезда», потеряв мощность.

Можно конечно залезть внутрь двигателя и вывести недостающие концы в распредкоробку, но это работа уже для специалиста.

Если вам помогла эта статья, то вы можете поделиться ей со своими друзьями, нажав кнопки социальных сетей, расположенные ниже.

Ошибки при соединении в треугольник

При соединениях иногда допускают ошибки, в результате которых вместо треугольника (рисунок 1, а) получается другое соединение (рисунок 1, в). Его причина – другое направление намотки одной из обмоток или, проще, ошибочное определение ее конца и начала. Пока треугольник еще разомкнут, то есть точки y и z еще не соединены, между ними получается двойное фазное напряжение 2U. Если их соединить, произойдет короткое замыкание.

Рисунок 1. Ошибки при соединениях обмоток трансформаторов в треугольник.

Чтобы избежать этой ошибки, поступают следующим образом

Соединяют два каких-либо конца разных обмоток и измеряют напряжение между свободными концами, принимая необходимые меры предосторожности, например, проводя испытания при значительно пониженном напряжении. Если концы выбраны правильно, то вольтметр V покажет фазное напряжение U (рисунок 1, б)

Если же напряжение будет в 1,73 раза больше фазного 1,73U (рисунок 1, г), то у одной из обмоток нужно переменить концы. Затем к одному из свободных концов присоединяют один конец третьей обмотки и снова измеряют напряжение между свободными концами (рисунок 1, д). Оно должно быть равно нулю. Но если третья обмотка «вывернута» (рисунок 1, в), то вольтметр покажет удвоенное фазное напряжение 2U. Тогда у третьей обмотки нужно переменить концы.

Устройство трансформатора

Устройство трехфазного силового трансформатора

По своему устройству трехфазные трансформаторы представляют сборную конструкцию, состоящую из следующих узлов:

  • основание, изготавливаемое в виде прочного пластикового каркаса;
  • магнитопровода, размещенные в каркасных секциях;
  • набор первичных и вторичных катушек с проволочными обмотками;
  • распределительная (распаечная) панель с контактными колодками;
  • система охлаждения, необходимая для отвода тепла от рабочей зоны.

Исключение составляет панель распайки отводов обмоток трансформатора, благодаря которой удается комбинировать группы подключений для получения нужной конфигурации.

Подключение к трехфазной сети двигателя с короткозамкнутым ротором

Самыми эффективными и часто используемыми способами подключения асинхронного двигателя к трехфазной сети являются так называемые звезда и треугольник.

В конструкции двигателя с короткозамкнутым ротором есть всего шесть контактов обмоток – по три на каждой. Для того чтобы подключить асинхронный двигатель звездой необходимо соединить концы обмоток в одном месте, подобно лучам звезды. Примечательно, что в такой схеме напряжение у начал обмоток составляет 380 В, а на участке цепи, пролегающем между их соединением и местом подключения фаз – 220 В. Возможность включения двигателя данным методом указывается на его бирке символом Y.

Главное достоинство этой схемы в том, что она предотвращает возникновение перегрузок по току на электродвигателе при условии использования четырехполюсного автомата. Машина запускает плавно, без рывков. Недостаток схемы в том, что пониженное напряжение на каждой из обмоток не дает двигателю развивать максимальную мощность.

схема подключения звезда

Если электродвигатель с короткозамкнутым ротором был подключен по схеме звезда, это можно заметить по общей перемычке на концах обмоток.

Асинхронный двигатель, звезда в сборе

Для обеспечения предельной рабочей мощности трехфазного электродвигателя его подключают к сети треугольником. В этой схеме обмотки статора соединяются друг с другом по принципу конец-начало. При питании от трехфазной сети нет необходимости в соединении с рабочим нулем. Напряжение на участках цепи между выводами будет равняться 380 В. На табличке двигателя, подходящего для подключения треугольников, изображается символ ∆. Иногда производитель даже указывает номинальную мощность при использовании той или иной схемы.

схема подключения «треугольник»

Главный недостаток треугольника – пусковые токи слишком большой величины, которые иногда перегружают проводку и выводят её из строя. В качестве оптимального решения изредка создают комбинированную схему, в которой запуск и набор скорости происходит при «звезде», а затем обмотки переключают на «треугольник».

Как управлять переключениями электродвигателя

Часто для пуска электрического двигателя большой мощности используется переключение соединения «треугольник» в «звезду», это необходимо для снижения параметров тока при пуске. Иными словами, пуск двигателя происходит в режиме «звезда», а вся работа осуществляется на соединении «треугольник». Для этой цели используется контактор на три фазы.

Необходимо при автоматическом переключении выполнить обязательные условия:

  • сделать блокировку контактов от одновременного срабатывания;
  • обязательное исполнение работы, с задержкой времени.

Задержка времени необходима для 100%-го отключения соединения «звезда», иначе при включении соединения «треугольник» возникнет между фазами КЗ. Используется реле времени (РВ), которое выполняет задержку переключения на интервал от 50 до 100 миллисекунд.

Какими способами можно сделать задержку времени переключений

Когда применяется схема «звезда и треугольник», надо обязательно выполнять задержку времени включения соединения (Δ), пока не отключится соединение (Y), специалистами отдается предпочтение трем методам:

  • с помощью контакта нормально разомкнутого в реле времени, который проводит блокировку схемы «треугольник», когда происходит пуск электродвигателя, а момент переключения контролирует токовое реле (РТ);
  • используя таймер в реле времени современного исполнения, который имеет способность переключать режимы с интервалом от 6 до 10 секунд.

Стандартная схема переключения

Классический вариант переключения со «звезды» на «треугольник» специалистами считается надежным способом, он не требует больших затрат, прост в исполнении, но, как и любой другой способ, имеет недостаток — это габаритные размеры РВ (реле времени). Этот тип РВ гарантированно выполняет задержку времени намагничиванием сердечника, а чтобы размагнитить его, требуется время.

Схема смешанного (комбинированного) включения работает следующим образом. Когда оператор включает трехфазный выключатель (АВ), пускатель электродвигателя приготовлен к действию. Через контакты кнопки «Стоп», нормально замкнутого положения и через нормально разомкнутые контакты кнопки «Пуск», которую нажимает оператор, электрический ток проходит в катушку контактора (КМ). Контакты (БКМ) обеспечивают самоподхват силовых контактов и удерживают их во включенном положении.

Реле в схеме (КМ) обеспечивает способность отключения оператором кнопкой «Стоп» электрический двигатель. Когда «фаза управления» проходит через пусковую кнопку, она также проходит замкнутые нормально расположенные контакты (БКМ1) и контакты (РВ) — запускается контактор (КМ2), силовые контакты его обеспечивают подачу напряжения на соединение (Y), начинается раскрутка ротора электродвигателя.

Как работает пусковой переключатель со звезды на треугольникКак работает пусковой переключатель со звезды на треугольник

Когда оператор осуществляет пуск двигателя, контакты (БКМ2) в контакторе (КМ2) размыкаются, это порождает неработающее состояние силовых контактов (КМ1), которые обеспечивают питание соединения двигателя Δ.

Токовое реле (РТ) срабатывает практически сразу из-за высоких значений тока, которое включено в цепь токовых трансформаторов (ТТ1) и (ТТ2). Управляющая цепь катушки контактора (КМ2) шунтируется контактами токового реле (РТ), что не дает сработать (РВ).

В цепи контактора (КМ1) блок контактов (БКМ2) размыкается при запуске (КМ2), что не дает сработать катушке (КМ1).

С набором нужного параметра оборотов вращения ротора двигателя контакты токового реле размыкаются, так как пусковой ток уменьшается в управлении контактора (КМ2), одновременно с размыканием контактов, подающих напряжение на соединение обмотки (Y), БКМ2 соединяются, что приводит в рабочее положение контактор (КМ1), а в его цепи блок контактов БКМ2 размыкается, и, как следствие, обесточивается РВ. Преобразование включения «треугольника» в «звезду» происходит после остановки двигателя.

Важно! Временное реле отключается не сразу, а с задержкой, что дает некоторое время в цепи (КМ1) контактам реле быть замкнутым, этим обеспечивается пуск (КМ1) и работа двигателя по схеме «треугольник»

Недостатки стандартной схемы

Несмотря на надежность работы классической схемы переключения с одного соединения на другое соединение электрического двигателя большой мощности, она имеет свои неудобства:

надо правильно делать расчет нагрузки на вал электродвигателя, иначе он будет долго набирать обороты, что не даст быстро сработать токовому реле и затем переключиться на работу по соединению Δ, а также в этом режиме крайне нежелательно долго эксплуатировать двигатель;

Оцените статью
Рейтинг автора
5
Материал подготовил
Илья Коршунов
Наш эксперт
Написано статей
134
Добавить комментарий