Особенности работы и схема транзистора дарлингтона

Схема

Учитывая, что LM317 может работать с максимальным током в 1,5 А, на выходе получаем относительно небольшую выходную мощность. К счастью, это ограничение можно преодолеть путем соединения нескольких LM317 параллельно, как представлено на схеме:

Увеличение по клику

Максимальное входное напряжение для LM317 составляет 40 В, поэтому, казалось бы, запитать усилитель можно от двухполярного источника с напряжением не более ±20 V. Однако, операционный усилитель, допускает работу с максимальным напряжением питания ±18 В. Поэтому, по мнению автора, работа схемы от источника питания с напряжением ±15В будет вполне разумным и безопасным решением.

Определившись с напряжением питания мы можем рассчитать необходимый ток покоя. Для нагрузки сопротивлением 8 Ом он составит 15 В/8Ω=1,875 А. Теоретическая максимальная мощность будет составлять около 14 Вт, хотя на практике получилось 12 Вт при чисто резистивной нагрузке. Так как акустическая система далека по своим свойствам от резистивной нагрузки, ток покоя следует взять несколько больший, например, 2,2А. В этом случае величина токозадающего резистора составит 1,25/2,2=0,56 Ω.

При этом на резисторе будет рассеивать чуть меньше 3 Вт, поэтому рекомендуется использовать резистор мощностью не менее 5 Вт. При таких параметрах потребляемая мощность одного канала усилителя составит 30×2,2=66 Вт.

А что вы хотели? Класс «А»!

Сравнение с электронными лампами

Дополнительные сведения: Электронная лампа

До разработки транзисторов, вакуумные (электронные) лампы (или просто «лампы») были основными активными компонентами в электронном оборудовании. По принципу управления наиболее родственен электронной лампе полевой транзистор. Многие схемы, разработанные для ламп, стали применяться и для транзисторов (эти схемы даже получили некоторое развитие, поскольку электронные лампы имеют фактически только один тип проводимости — электронный, транзисторы же могут иметь как электронный, так и дырочный тип проводимости (эквивалент воображаемой «позитронной лампы»)), что привело к широкому использованию комплементарных схем (КМОП); многие соотношения, описывающие работу ламп, пригодны для описания работы полевых транзисторов.

Преимущества

Основные преимущества, которые позволили транзисторам заменить своих предшественников (вакуумные лампы) в большинстве электронных устройств:

  • малые размеры и небольшой вес, что способствует развитию миниатюрных электронных устройств;
  • высокая степень автоматизации и групповой характер многих этапов технологического процесса изготовления, что ведёт к снижению удельной стоимости;
  • низкие рабочие напряжения, что позволяет использовать транзисторы в небольших, с питанием от малогабаритных электрохимических источников тока, электронных устройствах;
  • не требуется дополнительного времени на разогрев катода после включения устройства;
  • уменьшение рассеиваемой мощности, в том числе из-за отсутствия разогрева катода, что способствует повышению энергоэффективности прибора в целом;
  • высокая надёжность и бо́льшая физическая прочность;
  • очень продолжительный срок службы — некоторые транзисторные устройства находились в эксплуатации более 50 лет;
  • возможность сочетания с дополнительными устройствами[прояснить], что облегчает разработку дополнительных схем, что не представляется возможным с вакуумными лампами;
  • стойкость к механическим ударам и вибрации, что позволяет избежать проблем при использовании в микрофонах и в аудиоустройствах.

Недостатки (ограничения)

  • Кремниевые транзисторы обычно не работают при напряжениях выше 1 кВ (вакуумные лампы могут работать с напряжениями на порядки больше 1 кВ). При коммутации цепей с напряжением свыше 1 кВ, как правило, используются IGBT транзисторы;
  • Применение транзисторов в мощных радиовещательных и СВЧ передатчиках нередко оказывается технически и экономически нецелесообразным: требуется параллельное включение и согласование многих сравнительно маломощных усилителей. Мощные и сверхмощные генераторные лампы с воздушным или водяным охлаждением анода, а также магнетроны, клистроны, лампы бегущей волны (ЛБВ) обеспечивают лучшее сочетание высоких частот, мощностей и приемлемой стоимости.
  • транзисторы гораздо более уязвимы, чем вакуумные лампы, к действию электромагнитного импульса, в том числе и одного из поражающих факторов высотного ядерного взрыва;
  • чувствительность к радиации и космическим лучам (созданы специальные радиационно-стойкие микросхемы для электронных устройств космических аппаратов).

Составной транзистор

Схема составного транзистора ( а и включение его по схеме с общим эмиттером ( б.

Составной транзистор чаще всего применяют, чтобы получить наибольший коэффициент передачи тока в схеме с общим эмиттером.

Принципиальная схема корректора на пяти транзисторах 46.

Составной транзистор VT3VT4 предотвращает перегрузку входного каскада. Активная коллекторная нагрузка в виде источника постоянного тока на транзисторе VT5 обеспечивает хорошую линейность по сравнению с резистив-ной нагрузкой и позволяет снизить нелинейные искажения корректора. Цепь С9, R10, коммутируемая кнопочным переключателем SB1, реализует режим работы корректора с рокот-фильтром. В этом режиме происходит завал частот ниже 100 Гц, тем самым уменьшается восприятие вибраций электродвигателя проигрывателя. Фильтры R2C3 и R4C4 обеспечивают развязку по цепям питания.

Составные транзисторы ухудшают термостабильность усилителя мощности, так как необходимо скомпенсировать изменения напряжения на переходах эмиттер — база четырех транзисторов.

Транзисторные фильтры с потребителем параллельно транзистору ФШ. а — управляемый со входа. б — управляемый с выхода. в — эквивалентная схема для а. г — экспериментальная зависимость коэффициента фильтрации фильтра по схеме а от величи.

Составные транзисторы могут выполняться на транзисторах разного типа проводимости; такие схемы называют с дополнительной симметрией. Эти составные транзисторы имеют меньшие rt и гб, что позволяет получить меньшее значение 2ВЫХ и несколько большее значение / С. Более подробно эти составные транзисторы рассмотрены в гл.

Составные транзисторы Т3 и Т4 являются регулирующим элементом, изменяющим ток в обмотке возбуждения генератора. При закрытом транзисторе Т2 на базе составного транзистора будет отрицательный потенциал и транзисторы Tz и Г4 будут открыты. Если открывается транзистор Т2, то транзисторы Т3 и Т4 закрываются. При постоянной частоте тока генератора частота следования импульсов также постоянна.

Соединения составных транзисторов по схемам.

Составной транзистор, выполненный по схеме сдвоенного эмиттер-кого повторителя ( рис. 85, а), не изменяет полярности сигнала, обладает большим коэффициентом передачи тока пы11ыуihzivt, имеет большое входное и малое выходное сопротивления.

Составной транзистор в виде усилителя на разноструктурных ( р-п — р и п-р — п) транзисторах ( рис. 85, б) содержит два каскада с ОЭ с глубокой последовательной ООС по напряжению. Поскольку каждый каскад изменяет полярность сигнала, в целом схема представляет собой неинвертирующий усилитель. С выхода схемы напряжение подается на вход ( эмиттер первого транзистора) в про-тивофазе с входным сигналом, подводимым к цепи базы. Приведенный составной транзистор обладает свойствами эмиттерного повторителя. Его коэффициент усиления меньше единицы, а из-за ОС входное сопротивление велико, выходное мало. ОС по напряжению, поэтому вывод коллектора транзистора V2 играет роль эмиттера составного транзистора, а вывод эмиттера V2 — роль его коллектора. При выбранных структурах транзисторов VI и V2 схема обладает свойствами р-ге-р-транзистора.

Составной транзистор, выполненный по каскадной схеме ( рис. 85, в), представляет собой усилитель, в котором транзистор VI включен по схеме с ОЭ, a V2 — по схеме с ОБ. Схема эквивалентна одиночному транзистору, включенному по схеме с ОЭ с параметрами, близкими к параметрам транзистора VI. Последний обладает высоким выходным сопротивлением, что обеспечивает транзистору V2 получение широкой полосы частот.

Составной транзистор представляет собой сочетание двух или нескольких элементов, соединенных таким способом, что образуется активный трехполюсник с новыми параметрами и характеристиками.

Схемы составных транзисторов.

Составной транзистор обычно используют в оконечном каскаде, включая по схеме с общим эмиттером. При этом мощность, отдаваемая в нагрузку, определяется транзистором V2, а частотные свойства — относительно маломощным транзистором VI с большей рабочей частотой. Особенно часто СТ применяют в качестве регулируемого транзистора в стабилизаторах тока выпрямителей.

Транзистор Дарлингтон (PNP) в качестве переключателя

Мы можем использовать PNP-транзисторы в качестве пары Дарлингтона, но чаще всего используются NPN-транзисторы. Нет большой разницы в схеме с использованием NPN или PNP. Ниже на рисунке показана простая схема датчика, которая выдает аварийный сигнал с использованием пары Дарлингтона.

Этот контур представляет собой простой индикатор уровня воды, в котором пара Дарлингтона используется в качестве переключателя. Мы знаем, что эта конфигурация транзистора обеспечивает большой ток коллектора, поэтому он может управлять зуммером на выходе.

Когда уровень воды недостаточен для замыкания датчика, транзистор Дарлингтона находится в выключенном состоянии. Следовательно, цепь разорвана, и через нее не протекает ток.

По мере повышения уровня воды датчик замыкается, в результате чего поступает необходимый базовый ток на пару Дарлингтона. Следовательно, цепь замыкается, и ток нагрузки протекает так, что зуммер подает сигнал.

Каскодная схема

рис.  Каскодный на биполярных n-p-n транзисторах.

Составной транзистор, выполненный по так называемой каскодной схеме, характеризуется тем, что транзистор VT1 включен по схеме с общим эмиттером, а транзистор VT2 — по схеме с общей базой. Такой составной транзистор эквивалентен одиночному транзистору, включенному по схеме с общим эмиттером, но при этом он имеет гораздо лучшие частотные свойства, высокое выходное сопротивление и больший диапазон, т.е. меньше искажает передаваемый . Так как потенциал коллектора входного транзистора практически не изменяется, это существенно подавляет нежелательное влияние эффекта Миллера и улучшает частотные свойства.

Составные транзисторы. Схемы включения

Транзисторы как силовые элементы многих радиоэлектронных устройств для нормальной работы должны выполнять следующие функции:

1. Обеспечивать управление заданным током нагрузки при большом усилении по мощности.

2. Обладать достаточной (с учётом заданной выходной мощности и диапазонов изменения входного и выходного напряжений) рассеиваемой мощностью.

3. Иметь максимально допустимое напряжение коллектор – эмиттер, позволяющее без опасности пробоя обеспечивать необходимое падение напряжение на переходе коллектор – эмиттер при возможных значениях входного и выходного напряжений.

СОСТАВНОЙ ТРАНЗИСТОР ПАРА DARLINGTONСОСТАВНОЙ ТРАНЗИСТОР ПАРА DARLINGTON

В некоторых случаях имеющиеся в наличии транзисторы не позволяют выполнить одно или несколько вышеописанных условий, тогда прибегают к помощи так называемых составных транзисторов. Схем составных транзисторов существует великое множество, но основных схем существует всего три.

Тандемное включение транзисторов (схемы Дарлингтона и Шиклаи)

Довольно часто возникает ситуация, когда необходимого коэффициента усиления одного транзистора не хватает. В этом случае транзисторы соединяют тандемно (то есть выходной ток первого транзистора является входным током для второго). Существует две схемы такого включения: схема Дарлингтона и схема Шиклаи. Отличие заключается лишь в том, что в схеме Дарлингтона используются транзисторы одинакового типа проводимости, а в схеме Шиклаи – разного типа проводимости.

Схема Дарлингтона

Схема Шиклаи

Данные пары – это просто два каскада эмиттерного повторителя. Иногда данные составные схемы транзисторов называют «супер-β» пары, так как они функционируют как один транзистор с высоким коэффициентом усиления.

Общий коэффициент передачи тока будет равен:

h21e(ОБЩ) = h21e(VT1)*h21e(VT2)

При использовании данных схем вполне возможна такая ситуация, когда нагрузка уменьшится до нуля (или некоторого минимального значения, близкого к нулю) или при повышении температуры базовый ток транзистора VT1 может стать равным нулю или даже переменить направление за счёт неуправляемого обратного тока коллектора. Во избежание запирания транзистора VT2 его режим следует стабилизировать с помощью резистора R1.

Транзистор

Буквально сразу после появления полупроводниковых приборов, скажем, транзисторов, они стремительно начали вытеснять электровакуумные приборы и, в частности, триоды. В настоящее время транзисторы занимают ведущее положение в схемотехнике.

Начинающему, а порой и опытному радиолюбителю-конструктору, не сразу удаётся найти нужное схемотехническое решение или разобраться в назначении тех или иных элементов в схеме. Имея же под рукой набор «кирпичиков» с известными свойствами гораздо легче строить «здание» того или другого устройства.

Не останавливаясь подробно на параметрах транзистора (об этом достаточно написано в современной литературе, например, в ), рассмотрим лишь отдельные свойства и способы их улучшения.

Одна из первых проблем, возникающих перед разработчиком, — увеличение мощности транзистора. Её можно решить параллельным включением транзисторов (рис.1). Токовыравнивающие резисторы в цепях эмиттеров способствуют равномерному распределению нагрузки.

Оказывается, параллельное включение транзисторов полезно не только для увеличения мощности при усилении больших сигналов, но и для уменьшения шума при усилении слабых. Уровень шумов уменьшается пропорционально корню квадратному из количества параллельно включённых транзисторов.

Защита от перегрузки по току наиболее просто решается введением дополнительного транзистора (рис.2). Недостаток такого самозащитного транзистора — снижение КПД из-за наличия датчика тока R. Возможный вариант усовершенствования показан на рис.3. Благодаря введению германиевого диода или диода Шоттки можно в несколько раз уменьшить номинал резистора R, а значит, и рассеиваемую на нём мощность.

Составной транзистор (рис. 4) имеет повышенное выходное сопротивление и значительно уменьшенный эффект Миллера благодаря каскодному включению полевого и биполярного транзисторов.

За счёт полной развязки второго транзистора от входа и питанию стока первого транзистора напряжением, пропорциональным входному, составной транзистор, изображённый на рис.5, имеет ещё более высокие динамические характеристики.

Единственное условие реализации такого транзистора — более высокое напряжение отсечки второго транзистора. Входной транзистор можно заменить на биполярный.

Одна из особенностей транзисторного ключа при изменяющейся нагрузке — изменение времени выключения транзистора. Чем больше насыщение транзистора при минимальной нагрузке, тем больше время выключения. Избежать глубокого насыщения можно путём предотвращения прямого смещения перехода база-коллектор. Наиболее простая реализация этой идеи с помощью диода Шоттки представлена на рис.6. На рис.7 изображён более сложный вариант — схема Бейкера.

Как пользоваться мультиметром M838 или DT838Как пользоваться мультиметром M838 или DT838

Как проверить полевой транзистор с помощью тестера.Как проверить полевой транзистор с помощью тестера.

Драйверы для полевых транзисторов, самые простые и распространённыеДрайверы для полевых транзисторов, самые простые и распространённые

Схемы включения транзистора

Для включения в схему транзистор должен иметь четыре вывода — два входных и два выходных. Но транзисторы почти всех разновидностей имеют только три вывода. Для включения трёхвыводного прибора необходимо один из выводов назначить общим, и, поскольку таких комбинаций может быть только три, то существуют три основные схемы включения транзистора:

Схемы включения биполярного транзистора

  • с общим эмиттером (ОЭ) — осуществляет усиление как по току, так и по напряжению — наиболее часто применяемая схема;
  • с общим коллектором (ОК) — осуществляет усиление только по току — применяется для согласования высокоимпедансных источников сигнала с низкоомными сопротивлениями нагрузок;
  • с общей базой (ОБ) — усиление только по напряжению, в силу своих недостатков в однотранзисторных каскадах усиления применяется редко (в основном в усилителях СВЧ), обычно в составных схемах (например, каскодных).

Схемы включения полевого транзистора

Полевые транзисторы, как с p-n переходом (канальные), так и МОП (МДП) имеют следующие схемы включения:

  • с общим истоком (ОИ) — аналог ОЭ биполярного транзистора;
  • с общим стоком (ОС) — аналог ОК биполярного транзистора;
  • с общим затвором (ОЗ) — аналог ОБ биполярного транзистора.

Схемы с открытым коллектором (стоком)

«Открытым коллектором (стоком)» называют включение транзистора по схеме с общим эмиттером (истоком) в составе электронного модуля или микросхемы, когда коллекторный (стоковый) вывод не соединяется с другими элементами модуля (микросхемы), а непосредственно выводится наружу (на разъем модуля или вывод микросхемы). Выбор нагрузки транзистора и тока коллектора (стока) при этом оставляется за разработчиком конечной схемы, в составе которой применяются модуль или микросхема. В частности, нагрузка такого транзистора может быть подключена к источнику питания с более высоким или низким напряжением, чем напряжение питания модуля/микросхемы. Такой подход значительно расширяет рамки применимости модуля или микросхемы за счет небольшого усложнения конечной схемы. Транзисторы с открытым коллектором (стоком) применяются в , микросхемах с мощными выходными каскадами, преобразователях уровней, шинных формирователях (драйверах) и т. п.

Статья с подробным описанием принципа (в англоязычном разделе).

Реже применяется обратное включение — с открытым эмиттером (истоком). Оно также позволяет выбирать нагрузку транзистора изменением внешних компонентов, подавать на эмиттер/сток напряжение полярности, противоположной напряжению питания основной схемы (например, отрицательное напряжение для схем с биполярными транзисторами n-p-n или N-канальными полевыми), и т. п.

Особенности работы устройства

У составных транзисторов постепенное уменьшение напряжения вдоль проводника на переходе база-эмиттер вдвое превышает стандартное. Уровень уменьшения напряжения на открытом транзисторе примерно равен тому падению напряжения, которое имеет диод.

По данному показателю составной транзистор сходен с понижающим трансформатором. Но относительно характеристик трансформатора транзистор Дарлингтона обладает гораздо большим усилением по мощности. Подобные транзисторы могут обслуживать работу переключателей частотой до 25 Гц.

Система промышленного выпуска составных транзисторов налажена таким образом, что модуль полностью укомплектован и оснащён эмиттерным резистором.

Читать онлайн «Искусство схемотехники. Том 1 [Изд.4-е]» автора Хилл Уинфилд — RuLit — Страница 232

Рис. 6.51. Высоковольтный «плавающий» стабилизатор.

Если вы любите аналогии, то представьте себе жирафа, который измеряет свой рост, глядя на землю с высоты, а затем стабилизирует его, меняя соответствующим образом длину шеи. Схема TL783 фирмы Texas Instruments — это ИС стабилизатора на 125 В, которая работает аналогичным образом; в случае небольших токов она заменяет схему на дискретных компонентах, показанную на рис. 6.51.

Последовательное соединение транзисторов. На рис. 6.52 показан трюк с последовательным соединением транзисторов для увеличения напряжения пробоя.

Рис. 6.52. Последовательное включение транзисторов для повышения напряжения пробоя.

Транзистор T1

управляет последовательно соединенными транзисторамиТ2Т4 , которые делят между собой большое напряжение между коллекторомТ2 и выходом. Одинаковые базовые резисторы выбираются достаточно малыми, чтобы обеспечить полный выходной ток транзисторов. Аналогичная схема будет работать и на МОП-транзисторах, но в этом случае следует подключить, как показано на рисунке, диоды защиты от обратного пробоя затвора (относительно прямого пробоя затвора вам не следует беспокоиться, поскольку МОП-транзисторы будут достаточно быстро включаться еще задолго до пробоя затвор-канал). Заметьте, что резисторы смещения дают некоторый выходной ток, даже когда транзисторы выключены, поэтому должна быть минимальная нагрузка на землю для того, чтобы предотвратить подъем выходного напряжения выше стабилизированного уровня. Во многих случаях целесообразно включить параллельно резисторам делителя небольшие конденсаторы для того, чтобы обеспечить работоспособность делителя на высоких частотах. Емкость конденсаторов должна быть достаточно большой для того, чтобы нейтрализовать разницу входных емкостей транзисторов; в противном случае будет неравное деление и общее напряжение пробоя уменьшится.

Последовательно соединенные транзисторы можно использовать, конечно, не только в источниках питания. Их иногда можно увидеть в высоковольтных усилителях, хотя часто это и необязательно, так как выпускаются высоковольтные МОП-транзисторы.

В высоковольтных схемах типа этой можно легко упустить из виду тот факт, что могут потребоваться 1-ваттные (и более) резисторы, а не стандартные на 1/4 Вт. Непосвященных ожидает более тонкая ловушка, а именно, максимальное напряжение, достигающее 250 В, для стандартных («угольных») резисторов на 1/4 Вт независимо от мощности рассеяния. Угольные резисторы проявляют на высоких напряжениях довольно странное поведение коэффициентов сопротивления по напряжению, не говоря уж о постоянных изменениях сопротивления. Например, при реальных измерениях (рис

6.53) на делителе 1000:1 (10 МОм, 10 кОм) при напряжении 1 кВ отношение оказывается равным 775:1 (ошибка 29 %!); обратите внимание, что мощность соответствовала номинальной. Этот «неомический» эффект играет важную роль, в частности, в делителях для съема выходного напряжения в высоковольтных источниках питания и усилителях

Будьте внимательны! Фирмы, такие как Victoreen, выпускают резисторы различного типа, предназначенные для подобных высоковольтных применений.

Рис. 6.53. Угольные композиционные резисторы показывают снижение сопротивления при напряжениях выше 250 В.

Стабилизация входного напряжения. В высоковольтных источниках питания особенно в тех, которые работают с малыми токами, иногда применяют другой способ — стабилизацию не выходного напряжения, а входного. Обычно это делается с помощью высокочастотных импульсных преобразователей постоянного тока, поскольку попытка стабилизировать вход переменного напряжения 60 Гц приводит к слабой стабилизации и высокому уровню остаточной пульсации. Основная идея показана на рис. 6.54.

Рис. 6.54. Высоковольтный импульсный источник питания.

Трансформатор Тр1

и связанная с ним схема формируют некоторое промежуточное нестабилизированное напряжение, допустим, 24 В; можно использовать и аккумулятор. От этого напряжения работает генератор прямоугольных импульсов, на выходе которого размещается двухполупериодный выпрямитель и фильтр

Отфильтрованный постоянный ток является выходным сигналом, часть которого поступает обратно на генератор для управления скважностью или амплитудой в зависимости от выходного напряжения. Поскольку генератор работает на высокой частоте, реакция схемы достаточно быстрая, а выпрямленное напряжение легко фильтруется, поскольку оно происходит от прямоугольного колебания, подвергнутого двухполупериодному выпрямлению

АБ1 – однотактный усилитель класса А

Данный усилитель класса А на транзисторах минимален по деталям, но в то же время имеет прекрасное звучание и стабильность в работе. Схема задумана как выходной каскад с драйвером на лампе, усиление невелико, практически повторитель, либо нужен предварительный усилитель с выходом на 3-4 В.

Схему прислал Александр Бокарёв, она полностью авторская и является финальной версией поиска звучащей и несложной схемы на полевом транзисторе. Этот однотактный усилитель задуман как альтернатива лампе. Стабильность в работе шикарная, схема работала на крохотном радиаторе, разогревался чуть не до кипения, но ток держится четко.

Усилитель мощности АБ1

Усилитель имеет усиление выше единицы, до 2-3 раз. С усилением завязано выходное сопротивление. К усилителю предполагается драйвер на лампе с усилием примерно 10-12, это навскидку 5687, ECC82 или наша 6С31Б. Но и сам по себе усилитель способен звучать на АС, усиления в принципе хватает. За счет неглубокой ООС имеет невысокое выходное, 1 Ом и выше, по желанию. Спектр триодный, звучание ламповое, входное сопротивление высокое, в районе 50-70 кОм, полоса до 1-4 МГц. Делитель с выхода в эмиттер транзистора Т1 можно заменить на переменный резистор и настраивать усиление и выходное сопротивление. В среднюю точку привязана земля усилителя, выход туда же с входа усилителя, защита для АС не нужна. Параллельно нагрузке стоит цепь Цобеля, с ней форма импульса идеально ровная, хотя и без Цобеля все неплохо.

Блок питания для Exrem (на два канала)

Мощность рассеиваемая на каждом полевом транзисторе БП не выше 10 Вт, можно как вариант закрепить транзисторы на одном радиаторе с выходными полевиками. Схема обеспечивает плавный подъём питания за пару секунд и полное отсутствие пульсаций.

По выходу стабилизатора питания в два этажа стоят банки по 2200 мкФ, их средняя точка это земля схемы, питание плюс и минус – висячее. По выходу схемы нет емкости, эту роль играют те самые две банки, при аварии постоянное напряжение не идет в нагрузку. Так же нет шумов и грохота при включении, потому что диагональ полумоста. Электролитические конденсаторы по питанию в усилителе мощности лучше ставить ближе к схеме. Диод D7 1N4001 шунтирует зарядный резистор R2.

Один канал усилителя выделяет 25 Вт тепла. При радиаторе в 1000 см2 рука терпит некоторое время, значит, 65-70° есть и можно успокоиться. Хотя на сильно меньшем радиаторе работали два таких полевика и еще два резистора нагрузки, грелось страшно и все равно работало. Выходные полевики в плане нагрева очень замечательные.

Выходная мощность до ограничения с питанием 30 В не более 3,5 Вт, с питанием 24 В примерно 2 Вт, ограничение плавное, без острых углов и резких границ, похоже на ламповый однотактный каскад. Спектр классический триодный, короткий и быстро спадающий.

Фото макета:

Выходное сопротивление схемы на латерале регулируется глубиной обратной связи с выхода в эмитттер биполярного транзистора Т1. При подгонке выходного сопротивления необходимо подстроить и смещение входного транзистора одним из двух резисторов, по симметричному ограничению выходного сигнала на нагрузке.

Схема сложилась в процессе перебора разных вариантов от Марка Хьюстона и Нельсона Пасса на одиночном полевом транзисторе с резисторной нагрузкой. Ни один из которых не отвечал требованиям нормальной схемы в плане выходного и входного сопротивления.

Без введения ООС получить выходное сопротивление хотя бы 2 Ома в принципе невозможно, внутреннее у латерала слишком велико, 6 Ом. Добавив транзистор и цепь ООС, получил то, что нужно: высокое входное, в районе 50-100 кОм, низкое выходное, от 1 Ома и выше, полоса пропускания от 1 Гц до Мгц. Усиление невелико, максимум 3, но и схема задумана была не как полноценный усилитель, а как выходной каскад в А классе, некий аналог лампового однотактника на 2А3, который мне хорошо и давно знаком. И могу сказать, что это новая схемка по звуку мало отличается от лампача, такой же легкий шелестящий саунд, прекрасно звучат самые сложные инструменты – труба и скрипка. Другое дело, мощность невелика, 2-3 Вт на 8 Ом, но звук того стоит.

Наброски от автора:

Тема на форуме

Автор проекта: Александр Бокарёв

Оцените статью
Рейтинг автора
5
Материал подготовил
Илья Коршунов
Наш эксперт
Написано статей
134
Добавить комментарий