Электромагнитная индукция сравнение электростатического и магнитного полей электростати- ческое магнитное источник поля что служит индикатором поля? — презентация

История теории

Ганс Христиан Эрстед

Первоначально электричество и магнетизм считались двумя отдельными силами. Эта точка зрения изменилась, однако, с публикацией в 1873 году работы Джеймса Максвелла «Трактат по электричеству и магнетизму», в которой было показано, что взаимодействие положительных и отрицательных зарядов регулируется одной силой. Существуют четыре основных эффекта, следующие из этих взаимодействий, которые были ясно продемонстрированы экспериментами:

  1. Электрические заряды притягиваются или отталкиваются друг от друга с силой, обратно пропорциональной квадрату расстояния между ними: разноимённые заряды притягиваются, одноимённые — отталкиваются.
  2. Магнитные полюса (или состояния поляризации в отдельных точках) привлекают или отталкивают друг друга похожим способом и всегда идут парами: каждый северный полюс не существует отдельно от южного.
  3. Электрический ток в проводе создает круговое магнитное поле вокруг провода, направленное (по или против часовой стрелки) в зависимости от течения тока.
  4. Ток индуцируется в петле провода, когда он сдвигается ближе или дальше относительно магнитного поля или магнит перемещается ближе или дальше от петли провода; направление тока зависит от направления этих перемещений.

Андре-Мари Ампер

Готовясь к лекции, вечером 21 апреля 1820 года, Ганс Христиан Эрстед сделал удивительное наблюдение. Когда он занимался подборкой материала, то заметил, что стрелка компаса отклоняется от северного магнитного полюса, когда электрический ток от батареи, которую он использовал, включался и выключался. Это отклонение навело его на мысль, что магнитные поля исходят со всех сторон провода, по которому проходит электрический ток, подобно тому как распространяются в пространстве свет и тепло, и что опыт указывает на прямую связь между электричеством и магнетизмом.

Майкл Фарадей

На момент открытия Эрстед не предложил удовлетворительного объяснения этого явления, и не пытался представить явление в математических выкладках. Однако, три месяца спустя, он стал проводить более интенсивные исследования. Вскоре после этого он опубликовал результаты своих исследований, доказав, что электрический ток создает магнитное поле, когда течёт по проводам. В системе СГС единицу электромагнитной индукции (Э) назвали в честь его вклада в область электромагнетизма.

Джеймс Клерк Максвелл

Выводы, сделанные Эрстедом, привели к интенсивному исследованию электродинамики мировым научным сообществом. К 1820 году относятся также работы Доминика Франсуа Араго, который заметил, что проволока, по которой течет электрический ток, притягивает к себе железные опилки. Он же намагнитил впервые железные и стальные проволоки, помещая их внутрь катушки медных проволок, по которым проходил ток. Ему же удалось намагнитить иглу, поместив её в катушку и разрядив лейденскую банку через катушку. Независимо от Араго намагничивание стали и железа током было открыто Дэви. Первые количественные определения действия тока на магнит точно так же относятся к 1820 году и принадлежат французским учёным Жан-Батисту Био и Феликсу Савару. Опыты Эрстеда повлияли также на французского физика Андре-Мари Ампера, представившего электромагнитную закономерность между проводником и током в математической форме. Открытие Эрстеда также представляет собой важный шаг на пути к единой концепции поля.

Это единство, которое было обнаружено Майклом Фарадеем, дополнено Джеймсом Максвеллом, а также уточнено Оливером Хевисайдом и Генрихом Герцем, является одним из ключевых достижений XIX столетия в математической физике. У этого открытия были далеко идущие последствия, одним из которых стало понимание природы света. Свет и другие электромагнитные волны принимают форму квантованных самораспространяющихся колебательных явлений электромагнитного поля, названных фотонами. Различные частоты колебания приводят к различным формам электромагнитного излучения: от радиоволн на низких частотах, к видимому свету на средних частотах, к гамма-лучам на высоких частотах.

Эрстед не был единственным человеком, открывшим связь между электричеством и магнетизмом. В 1802 году Джованни Доменико Романьози, итальянский ученый-правовед, отклонял магнитную стрелку электростатическими разрядами. Но фактически в исследованиях Романьози не применялся гальванический элемент и постоянный ток как таковой отсутствовал. Отчёт об открытии был опубликован в 1802 году в итальянской газете, но он был почти не замечен научным сообществом того времени.

Что такое электрическое поле

В физике электрическое поле — это модель, используемая для объяснения или понимания влияний и поведения зарядов и переменных магнитных полей. В этой модели электрическое поле представлено силовыми линиями. Линии электрического поля направлены к отрицательным зарядам, тогда как они направлены наружу от положительных зарядов. Электрические поля создаются электрическими зарядами или переменными магнитными полями. В отличие от зарядов (отрицательные и положительные заряды) притягивают друг друга, как заряды (отрицательно-отрицательные или положительно-положительные), с другой стороны, отталкивают.

В модели электрического поля обсуждаются некоторые величины, такие как напряженность электрического поля, плотность электрического потока, электрический потенциал и кулоновские силы, связанные с зарядами и переменными магнитными полями. Напряженность электрического поля в данной точке определяется как сила, действующая на неподвижную единицу испытательного заряда частицы, оказываемую электромагнитными силами.

Напряженность электрического поля (E), создаваемая частицей точечного заряда (Q), определяется как

где r — расстояние между точкой и заряженной частицей, а ε — диэлектрическая проницаемость среды.

Кроме того, сила (F), испытываемая зарядом q, может быть выражена как

Работа, выполняемая электромагнитными силами в электрическом поле, не зависит от пути. Итак, электрические поля — это консервативные поля.

Закон Кулона может быть использован для описания электростатического поля. (Электрическое поле, которое остается неизменным со временем). Однако уравнения Максвелла описывают как электрические, так и магнитные поля как функцию зарядов и токов. Итак, уравнения Максвелла очень полезны при работе с электрическими и магнитными полями.

Гравитационные силовые линии (черные) и эквипотенциалы вокруг Земли.

Конвекторное отопление, его особенности и принцип работы

Принцип работы конвекторного отопления основан на свойствах воздушных масс. Нагретый воздух легче холодного, поэтому всегда поднимается вверх. После остывания воздушные массы опускаются в нижнюю часть помещения, снова нагреваются при прохождении конвектора.

Главное достоинство конвекторного обогрева в быстром прогреве помещения и поддержании нужной температуры на протяжении всего времени работы прибора. Конвекторы подходят для отопления помещений жилого и хозяйственного назначения.

Принцип работы конвекторного отопления следующий:

  1. Внутри отопительного прибора находятся нагревательные элементы со значительной площадью поверхности. Они нагреваются при использовании тех или иных энергоресурсов.
  2. При соприкосновении воздуха с площадью нагревателя он подогревается и становится легче.
  3. Нагретый воздух выходит через конвекционные отверстия в верхней части радиатора и поднимается вверх.
  4. После остывания воздушные массы опускаются в нижнюю часть комнаты, снова поступают в отопительный прибор через прорези в его нижней части. Такая циркуляция продолжается, пока прибор работает.

Потенциал электрического поля

Помимо
напряженности электрическое поле
характеризуется еще одной важной
физической величиной – потенциалом. Рассмотрим
перемещение заряда q
в поле другого точечного заряда q
из точки 1 в точку 2 (рис

6.3). Работа силы
F
на элементарном перемещении dl определяется
соотношением

Рассмотрим
перемещение заряда q
в поле другого точечного заряда q
из точки 1 в точку 2 (рис. 6.3). Работа силы
F
на элементарном перемещении dl определяется
соотношением

, (6.5)

но
,
значит.
Подставим сюда вместо силы ее значение
из закона Кулона, получим:

. (6.6)

Для
вычисления работы перемещения заряда
из точки 1 в точку 2 по произвольному
пути 1–2 проинтегрируем (6.6) в пределах
от r1
до r2
, получим

. (6.7)

Из
выражения (6.7) следует, что работа
перемещения электрического заряда не
зависит от формы пути, по которому
перемещается заряд, а зависит только
от начальной и конечной точек. Если
заряд q,
перемещаясь в электрическом поле,
возвращается в исходную точку (r2
= r1),
то работа перемещения заряда по замкнутому
пути в электростатическом поле равна
нулю. Поля, обладающие указанным
свойством, называются потенциальными.

Найдем
отношение работы перемещения заряда к
величине этого заряда:

. (6.8)

Эта
величина не зависит от величины
перемещаемого заряда и от пути, по
которому он перемещается, и поэтому
служит характеристикой поля, созданного
зарядом q
, и называется разностью потенциалов
или электрическим напряжением.

Разность
потенциалов двух точек 1 и 2 электрического
поля измеряется работой, совершаемой
полем при перемещении единичного
положительного заряда между этими
точками.

Следует
подчеркнуть, что разность потенциалов
имеет смысл характеристики поля потому,
что работа перемещения заряда не зависит
от формы пути. Действительно, если бы
работа перемещения заряда зависела от
пути, то при перемещении одного и того
же заряда между теми же самыми точками
поля, это отношение Aq
не являлось бы однозначной характеристикой
этих точек поля.

Если
выбрать какую-либо точку пространства
в качестве начальной точки (точки
отсчета), то любой точке можно сопоставить
разность потенциалов относительно этой
начальной точки.

Для
случая поля точечного заряда наиболее
простое математическое выражение для
потенциала получается, если в качестве
начальной выбрать любую точку, удаленную
на бесконечность. Тогда работа перемещения
положительного заряда q из бесконечности
в данную точку поля, созданного другим
точечным зарядом q
, будет равна

. (6.9)

Отношение
работы перемещения положительного
заряда из бесконечности в данную точку
поля к величине этого заряда (работа по
перемещению единичного заряда) называется
потенциалом данной точки поля:

. (6.10)

Знак
минус в этом выражении означает, что в
данном случае работа совершается
внешними силами против сил поля.

Очевидно,
что напряжение U
между произвольными точками 1 и 2
электрического поля и потенциалы этих
точек связаны простым соотношением

. (6.11)

Для поля точечного
заряда

. (6.12)

Потенциал
любой точки поля, созданного положительным
зарядом – положителен и убывает до нуля
по мере удаления от заряда. Напротив –
потенциал поля, созданного отрицательным
зарядом, – отрицательная величина и
растет до нуля по мере удаления от
заряда.

Из
выражения для потенциала (6.12) следует,
что потенциал любой точки сферической
поверхностиS
c
центром в точке расположения заряда
одинаков (рис. 6.4). Такие поверхности
называются поверхностями равного
потенциала или эквипотенциальными
поверхностями.

Работу
перемещения заряда можно выразить через
разность потенциалов

.
(6.13)

Отсюда
следует, что работа перемещения заряда
по эквипотенциальной поверхности равна
нулю. Это значит, что сила, действующая
на заряд, а следовательно, и вектор
напряженности поля Е направлены
перпендикулярно эквипотенциальной
поверхности.

Используя
эквипотенциальные поверхности, можно
также дать графическое изображение
электрического поля.

Результаты,
полученные для поля точечного заряда,
легко распространить на поля, созданные
любым числом точечных зарядов, а так
как любое заряженное тело можно
представить как совокупность точечных
зарядов, то и на поле, созданное любым
заряженным телом.

Поля
точечных зарядов в соответствии с
принципом суперпозиции, накладываясь
друг на друга, не влияют друг на друга.
Поэтому потенциал поля любого числа
зарядов будет равен алгебраической
сумме потенциалов полей, созданных
отдельными зарядами, т. е.:

. (6.14)

Таким
образом, все вышеизложенное в отношении
понятия потенциала справедливо и для
поля, созданного заряженным телом любой
формы, а величину потенциала, в принципе,
можно вычислить по формуле (6.14).

Направление вектора магнитной индукции и способы его определения

Чтобы определить направление вектора магнитной индукции, нужно:

  1. Расположить в магнитном поле компас.
  2. Дождаться, когда магнитная стрелка займет устойчивое положение.
  3. Принять за направление вектора магнитной индукции направление стрелки компаса «север».

В пространстве между полюсами постоянного магнита вектор магнитной индукции выходит из северного полюса:

При определении направления вектора магнитной индукции с помощью витка с током следует применять правило буравчика:

При вкручивании острия буравчика вдоль направления тока рукоятка будет вращаться по направлению вектора →B магнитной индукции.

Отсюда следует, что:

Если по витку ток идет против часовой стрелки, то вектор магнитной индукции →B направлен вверх.

Способы обозначения направлений векторов:

Вверх
Вниз
Влево
Вправо
На нас перпендикулярно плоскости чертежа
От нас перпендикулярно плоскости чертежа

Пример №1. На рисунке изображен проводник, по которому течет электрический ток. Направление тока указано стрелкой. Как направлен (вверх, вниз, влево, вправо, от наблюдателя, к наблюдателю) вектор магнитной индукции в точке С?

Если мысленно начать вкручивать острие буравчика по направлению тока, то окажется, что вектор магнитной индукции в точке С будет направлен к нам — к наблюдателю.

Роль в природе

За счёт дальнодействия электромагнитное взаимодействие заметно проявляется как на макроскопическом, так и на микроскопическом уровнях. Фактически, подавляющее большинство физических сил в классической механике — силы упругости, силы трения, силы поверхностного натяжения и т. д. — имеют электромагнитную природу.

Электромагнитное взаимодействие определяет большинство физических свойств макроскопических тел и, в частности, изменение этих свойств при переходе из одного агрегатного состояния в другое. Электромагнитное взаимодействие лежит в основе химических превращений. Электрические, магнитные и оптические явления также сводятся к электромагнитному взаимодействию.

На микроскопическом уровне электромагнитное взаимодействие (с учётом квантовых эффектов) определяет структуру электронных оболочек атомов, структуру молекул, а также более крупных молекулярных комплексов и кластеров. В частности, величина элементарного электрического заряда определяет размеры атомов и длину связей в молекулах. Например, радиус Бора равен 4πεℏ2mee2{\displaystyle {{4\pi \varepsilon _{0}\hbar ^{2}} \over {m_{e}e^{2}}}}, где ε{\displaystyle \varepsilon _{0}} — электрическая постоянная, ℏ{\displaystyle \hbar } — постоянная Планка, me{\displaystyle m_{e}} — масса электрона, e{\displaystyle e} — элементарный электрический заряд.

Что такое электромагнитное поле?

Электромагнитное поле представляет собой фундаментальное физическое поле, оказывающее силовое воздействие на заряженные частицы, и определяется как совокупность электрического и магнитного полей, которые могут при определенных условиях порождать друг друга. Распространяясь в пространстве и времени, оно образует электромагнитные волны, которые в зависимости от частоты и длины подразделяются на радиоволны, инфракрасное или ультрафиолетовое излучения, видимый свет, рентгеновское и гамма-излучение.

Электромагнитные излучения различной частоты воздействуют на организм по-разному. Они окружают нас повсюду, оставаясь при этом невидимыми человеческому глазу. Основными источниками ЭМП выступают линии электропередач, домашняя электропроводка, бытовые электроприборы, СВЧ-печи, спутниковая и сотовая связь, компьютеры, а также мобильные телефоны. Любое техническое устройство, использующее либо вырабатывающее электрическую энергию, является источником ЭМП, испускаемых во внешнее пространство. Зоны с повышенными уровнями ЭМП создают радиотехнические объекты, телевизионные и радиолокационные станции, расположенные на производственных предприятиях, при этом плотность потока энергии, как правило, превышает допустимые нормы. При систематическом воздействии эти факторы оказывают негативное действие на здоровье человека, в связи с чем большое значение приобретает определения интенсивности и нормирование уровней электромагнитного фона.

Измеритель электромагнитного поля

Зафиксировать истинную обстановку и определить уровень излучения можно с помощью высокоточной техники, а именно, детекторов напряжённости электромагнитного поля. В зависимости от назначения данные приборы способны определять среднеквадратические значения магнитной индукции и напряженности электромагнитных полей на различных частотных диапазонах – начиная низкочастотными полями промышленной частоты 50 Гц и заканчивая высокочастотными потоками СВЧ-излучения.

Современные модели выполнены в компактном корпусе и оснащены микропроцессорным управлением, позволяющим автоматизировать процесс обработки полученных данных. Устройства малогабаритны, но, несмотря на это оборудованы широкоформатными дисплеями и большими кнопочными клавиатурами для простоты и удобства использования. Кроме того, преимуществом будет являться наличие встроенной памяти или специальных портов для передачи данных, дополнительные функции шумоподавления, фиксирование максимального сигнала, маркерные измерения, звуковое оповещение при превышении предельно допустимого уровня и т.д

Весь комплекс функциональных возможностей современных детекторов ЭМП позволяет осуществлять надзор по оперативному контролю норм безопасности промышленных электроустановок и проводить с удобством комплексное санитарно-гигиеническое обследование жилых и производственных помещений и рабочих мест.

Мы предоставляем гарантию на срок 12 месяцев и осуществляем оперативную бережную доставку в любые города России от 3000 рублей бесплатно!

Какой тип подойдет вам?

Что такое гравитационное поле

Гравитационное поле — это силовое поле в гравитационном взаимодействии, которое является моделью, используемой для объяснения и понимания гравитационных явлений.

В классической механике гравитационное поле является векторным полем. В этой модели определены несколько величин, таких как напряженность гравитационного поля, сила гравитации и гравитационный потенциал. Напряженность гравитационного поля в данной точке определяется как сила на единицу испытательной массы, оказываемая силой гравитации. Напряженность гравитационного поля (g), вызванная массой M в данной точке, является функцией положения точки. Это может быть выражено как

G — универсальная гравитационная постоянная, а rˆ — единичный вектор в направлении r. Взаимная гравитационная сила между двумя массами М и м определяется выражением

Гравитационные поля также являются консервативными силовыми полями, поскольку работа, выполняемая гравитационными силами, не зависит от траектории.

Ньютоновская теория гравитации не очень точная модель. В частности, ньютоновские решения заметно отличаются от фактических значений при решении задач с большой гравитацией. Итак, ньютоновская теория гравитации полезна только при решении задач с низкой гравитацией. Тем не менее, он достаточно точен, чтобы использоваться в большинстве практических приложений. При работе с проблемами высокой гравитации следует использовать общую относительность. В условиях низкой гравитации это приближается к ньютоновской теории.

Поле положительного электрического заряда перед горизонтальной идеально проводящей металлической поверхностью.

Взаимодействие зарядов. Два вида зарядов

Электрический заряд – скалярная физическая величина, характеризующая способность тела участвовать в электромагнитных взаимодействиях.

Обозначение – ​\( q \)​, единица измерения в СИ – кулон (Кл).

Существуют два вида электрических зарядов: положительный и отрицательный. Наименьший отрицательный заряд имеет электрон (–1,6·10-19 Кл), наименьший положительный заряд (1,6·10-19 Кл) – протон. Минимальный заряд, который может быть сообщен телу, равен заряду электрона (элементарный заряд). Если тело имеет избыточные (лишние) электроны, то тело заряжено отрицательно, если у тела недостаток электронов, то тело заряжено положительно.

Величина заряда тела будет равна

где ​\( N \)​ — число избыточных или недостающих электронов;
​\( e \)​ — элементарный заряд, равный 1,6·10-19 Кл.

Важно!
Частица может не иметь заряда, но заряд без частицы не существует. Электрические заряды взаимодействуют:

Электрические заряды взаимодействуют:

заряды одного знака отталкиваются:

заряды противоположных знаков притягиваются:

Прибор для обнаружения электрического заряда называется электроскоп. Основная часть прибора – металлический стержень, на котором закреплены два листочка металлической фольги, помещенные в стеклянный сосуд. При соприкосновении заряженного тела со стержнем электроскопа заряды распределяются между листочками фольги. Так как заряд листочков одинаков по знаку, они отталкиваются.

Для измерения зарядов можно использовать и электрометр. Основные части его – металлический стержень и стрелка, которая может вращаться вокруг горизонтальной оси. Стержень со стрелкой закреплен в пластмассовой втулке и помещен в металлический корпус, закрытый стеклянными крышками. При соприкосновении заряженного тела со стержнем стержень и стрелка получают электрические заряды одного знака. Стрелка поворачивается на некоторый угол.

Электростатика

Этот раздел электродинамики описывает частный случай, когда заряженные тела находятся в статичном состоянии. Такая ситуация значительно упрощает расчеты. Для практического примера можно создать электростатический конденсатор.

Устанавливают две плоскости одинаковой размерности параллельно на небольшом расстоянии, разделяют слоем диэлектрика. Если создать разницу потенциалов, между поверхностями образуется поле. В такой конструкции накапливается электрический заряд. Какой будет емкость, можно узнать с помощью этой формулы:

C=Q/ (ϕ1-ϕ2)=Q/U=e*S/d,

где

  • e – проницаемость диэлектрика;
  • e0 – электрическая постоянная (8,85*10-12 Ф/м);
  • S – площадь пластин;
  • D – расстояние между ними.

Конденсатор

Чтобы зарядить конденсатор до нужной емкости, надо затратить энергию W=(e*e0*E2/2)*S*D. На рисунке показано, как изменять рабочие параметры сборки при последовательном и параллельном соединении модулей.

Теорема Гаусса

Эта теорема определяет пропорциональность потока вектора напряженности электрического поля (Ф) заряду (Q), который заключен в произвольную поверхность замкнутого типа:

Ф=4π*Q.

Напряжённость электрического поля точечного заряда

В этом случае можно пользоваться рассмотренным выше законом Кулона. В следующих разделах представлены формулы для вычисления в разных системах единиц.

В единицах СИ

В этой системе базовой выбрана сила тока, поэтому кулон является производной величиной.

Основная формула:

F=k*(q1*q2/r122).

Здесь коэффициент k=1/(4π*e0).

Для системы СГС

Здесь, как и в предыдущем примере, выбран единичный заряд – «точка». Основные правила характеризуют физические процессы аналогично. Разница лишь в постоянных величинах. В данном случае коэффициент k обратно пропорционален диэлектрической проницаемости (е) среды.

В этом варианте для получения результата надо сложить вектора каждого заряда:

Еобщ=Е1+Е2+…+En.

Чтобы обеспечить непрерывность линии напряженности, берут интеграл соответствующей области. Построить распределение силовых линий можно с помощью расчета перемещения вектора по всем точкам.

Как происходит взаимодействие электрического и магнитного полей

Первые достаточно точные обоснования и выводы (как теоретические, так и практические) по результатам исследований процессов внутри данных полей сделал великий ученый Д. Максвелл. Он показал, какая взаимосвязь происходит между эклектическими зарядами и протекающими токами электромагнитного поля. Для проведения исследований и получения результатов, были применены ранее сформулированные законы Ампера и Фарадея. В трудах физика было определено точное соотношение между электрическим и магнитным полем, которое возникало вследствие определенного способа распределения зарядов в пространстве.

Оцените статью
Рейтинг автора
5
Материал подготовил
Илья Коршунов
Наш эксперт
Написано статей
134
Добавить комментарий