Тантал — применение

Понятие теплопроводности

Она является интенсивной физической величиной, то есть величиной, которая описывает свойство материи, не зависящей от количества последней. Интенсивными величинами также являются температура, давление, электропроводность, то есть эти характеристики одинаковы в любой точке одного и того же вещества. Другой группой физических величин являются экстенсивные, которые определяются количеством вещества, например, масса, объем, энергия и другие.

Противоположной величиной для теплопроводности является теплосопротивляемость, которая отражает способность материала препятствовать переносу проходящего через него тепла. Для изотропного материала, то есть материала, свойства которого одинаковы во всех пространственных направлениях, теплопроводность является скалярной величиной и определяется, как отношение потока тепла через единичную площадь за единицу времени к градиенту температуры. Так, теплопроводность, равная одному ватту на метр-Кельвин, означает, что тепловая энергия в один Джоуль переносится через материал:

  • за одну секунду;
  • через площадь один метр квадратный;
  • на расстояние один метр;
  • когда разница температур на поверхностях, находящихся на расстоянии один метр друг от друга в материале, равна один Кельвин.

Понятно, что чем больше значение теплопроводности, тем лучше материал проводит тепло, и наоборот. Например, значение этой величины для меди равно 380 Вт/(м*К), и этот металл в 10 000 раз лучше переносит тепло, чем полиуретан, теплопроводность которого составляет 0,035 Вт/(м*К).

Маркировка SMD конденсаторов

SMD конденсаторы ввиду малых размеров маркируются используется символы и цифры. В зависимости от типа конденсатора (танталовых, электролетических, керамических и т.д.) маркировка осуществляется различными способами.

Маркировка керамических SMD конденсаторов

Код таких конденстаторов состоит их 2 или 3-х символов и цифры. Первый символ (при наличии такового) говорит о производителе

(пример K – Kemet), второй это мантиса, а цифра является показателем степени емкости в пикоФарадах.

Пример

S3 это керамический SMD конденсатор с емкростью 4.7×103 пФ

Символ Мантиса Символ Мантиса Символ Мантиса Символ Мантиса
A 1.0 J 2.2 S 4.7 a 2.5

B
1.1
K
2.4
T
5.1
b
3.5

C
1.2
L
2.7
U
5.6
d
4.0

D
1.3
M
3.0
V
6.2
e
4.5

E
1.5
N
3.3
W
6.8
f
5.0

F
1.6
P
3.6
X
7.5
m
6.0

G
1.8
Q
3.9
Y
8.2
n
7.0

H
2.0
R
4.3
Z
9.1
t
8.0

коденсаторы могут иметь различные типы диэлектриков:

NP0 или C0G диэлектрик иммеет низкую диэлектрическую проницаемость и хорошую температурную стабильность. Z5U и Y5V дижлектрики обладают высокой диэлектрической проницаемостью с помощью чего достигается большая емкость конденсаторов и больший разброс параметров. X7R и Z5U широко используются в цепях общего назначения.

Диэлектрики обозначаются тремя симоволами, первые два это температурные пределы а третий это изменение емкости в % в данном интревале температур.

Пример

Z5U – точность +22, -56% в диапазоне температур от -55oC до -125oC до 

Температурный диапазон Изменение емкости
Первый символ Нижний предел Второй символ Верхний предел Третий символ Точность
X +10oC 2 +45oC A 1.0%
Y -30oC 4 +65oC B 1.5%
Z -55oC 5 +85oC C 2.2%
    6 +105oC D 3.3%
    7 +125oC E 4.7%
    8 +150oC F 7.5%
    9 +200oC P 10%
        R 15%
        S 22%
        T +22%,-33%
        U +22%,-56%
        V +22%,-82%

Маркировка электролитических SMD конденсаторов

 Для маркировки таких конденсаторов также используется символьно – цифровая маркировка в которую добавляется рабочее напряжение. Обозгачение состоит из 1-го символа и 3-х цифр. Символ означает рабочее напряжение

Пример 

A475  А – это рабочее напряжение, 47-значение , 5-мантиса. 

A475 = 47×105 пФ=4,7×106 пФ=4,7мФ 10В.

  • e-2.5В;
  • G-4В;
  • J-6.3В;
  • A-10В;
  • C-16В;
  • D-20В;
  • E-25В;
  • V-35В;
  • H-50В.

Существует также и другая маркировка используемые такими широко известными фирмами как Panasonic, Hitach и другие. Кодировние осуществляется 3-мя основными способами кодирования

Первый способ:

Маркировка осуществлется при помощи 3-х символов, первый это рабочее напряжение, второй это значение емкость третий это множитель. Если указаны только два символа то это означает что не указано рабочее напряжение (3-й символ).

Код Емкость Напряжение Код Емкость Напряжение
A6 1.0 16/35 ES6 4,7 25
A7 10 4 EW5 0,68 25
AA7 10 10 GA7 10 4
AE7 15 10 GE7 15 4
AJ6 2,2 10 GJ7 22 4
AJ7 22 10 GN7 33 4
AN6 3,3 10 GS6 4,7 4
AN7 33 10 GS7 47 4
AS6 4,7 10 GW6 6,8 4
AW6 6,8 10 GW7 68 4
CA7 10 16 J6 2,2 6.3/7/20
CE7 15 16 JE7 15 6.3/7
CJ6 4,7 10 GW6 6,8 4
CN6 3,3 16 JN6 3,3 6,3/7
CS6 4,7 16 JN7 33 6,3/7
CW6 6,8 16 JS6 4,7 6,3/7
DA6 1,0 10 JS7 47 6,3/7
DA7 10 20 JW6 6,8 6,3/7
DE6 1,5 20 N5 0,33 35
DJ6 2,2 20 N6 3,3 4/16
DN6 3,3 20 S5 0,47 25/35
DS6 4,7 20 VA6 1,0 35
DW6 6,8 20 VE6 1,5 35
E6 1,5 10/25 VJ6 2,2 35
EA6 1,0 25 VN6 3,3 35
EE6 1,5 25 VS5 0,47 35
EJ6 2,2 25 VW5 0,68 35
EN6 3,3 25 W5 0,68 20/35

Второй способ:

Маркировка четырмя символами (буквами и цифрами), которые обозначают номинальную емкость  и рабочее напряжение. Первый символ (буква) означает рабочее напряжение, следующие за ним 2 символа (цифры) означают емкость в пф, а последний символ(цифра) это количество нулей. Такая маркировка конденсаторов имеет 2 варианта:

  • две цифры означают номинал в пф, а третья – количество нулей;
  • номинал емкости указан в микрофорадах, а знак p выступает в роли десятичной запятой.

Третий способ:

Если размер корпуса большой то маркировка может располагатся в 2 строки, на первой указывается емкость, а на второй рабочее напряжение конденсатора. Если 2 цифры то емкость в микрофарадах если 3 то первые две это емкость в пикофарадах а третья это количество нулей (второй способ). Пример маркировки приведен на рисунке ниже.

Маркировка танталовых smd конденсаторов

Размером A и B

Маркировка рабочего напряжения осуществляется при помощи буквы, которая соответсвует определенному значению напряжения в В. 

Символ G J A C D E V T
Напряжение, В 4 6,3 10 16 20 25 35 50

Далее за символом (буквой) следует обозначение емкости которое состоит из 3-х цифр, первые 2 это емкость в пикофарадах а третья это количество нулей.

Пример:

маркировка E105 означает 10 00000 пФ и рабочем напряжением 25 В.

Если танталовые конденсаторы размером C,D,E то они маркируются прямой записью.

Пример:

маркировка 46 6V означает 47 мкФ и рабочим напряжением в 6 В.

  • < Назад
  • Вперёд >

Месторождения и добыча тантала

Та встречается в природе в минерале колумбит-танталит, который встречается в танталовых месторождениях в Австралии, Бразилии, Мозамбике, Таиланде, Португалии, Нигерии, Заире и Канаде. Для отделения Та от ниобия требуется либо электролиз, либо восстановление фтортанталата калия натрием, либо взаимодействие карбида с оксидом.

За последние 15 лет источник добычи Та изменился. Это связано с тем, что он находился в основном в Австралии, но добычу ведут преимущественно в Руанде и ДР Конго, что вызывает обеспокоенность по поводу его статуса в качестве конфликтного минерала в охваченных войной странах. Закон Додда-Франка означает, что компании должны отслеживать источник этих полезных ископаемых и использовать только аккредитованные ресурсы. Полезные ископаемые, используемые для финансирования вооруженных повстанцев и насилия, встречаются во всем мире. К ним относятся олово, вольфрам и тантал, присутствующих во многих остро популярных товарах, например, как смартфоны и ноутбуки.

Тантал обнаружен в залежах твердых пород, таких как граниты, карбониты и пегматиты — магматическая порода, состоящая из крупного гранита. Он не относится к широко распространённым металлам на планете, а добыча его сложна. Та происходит от переработки и рафинирования танталита — это общее название для любой его содержащей минеральной руды.

Большинство танталовых рудников находятся в открытых карьерах, некоторые находятся под землей. Процесс добычи Та включает взрыв, дробление и транспортировку полученной руды. Затем руда концентрируется на или вблизи площадки шахты, чтобы увеличить процентное содержание по весу оксида тантала и ниобия. Материал концентрируется с помощью методов мокрой гравитации, электростатики и электромагнетизма.

Танталовый концентрат транспортируется в процессор для химической обработки. Затем его обрабатывают смесью плавиковой и серной кислот при высоких температурах. Это приводит к тому, что Та и ниобий растворяются в виде фторидов. Концентрат переводят в жидкий раствор. Суспензия фильтруется и далее обрабатывается экстракцией растворителем.

Использование метилизобутилкетона (MIBK) или жидкого ионного обмена с применением аминного экстрагента в керосинах дает высокоочищенные растворы тантала и ниобия. Наконец, оксид тантала восстанавливается расплавленным натрием с образованием металлического Та.

Преимущества твердотельных конденсаторов

  • В сравнение с электролитической конструкцией, существенно снижено эквивалентное последовательное сопротивление. Благодаря этому деталь практически не нагревается на высоких частотах.
  • Значительная величина тока пульсаций делает работу более стабильной, особенно в схемах обеспечения электропитанием.
  • Твердотельные конденсаторы практически не зависят от температуры. Кроме физической защиты от раздувания корпуса, это свойство позволяет сохранять параметры при нагреве.
  • Продолжительность жизни. Если принять за эталон рабочую температуру 85 °C, срок эксплуатации (без потери характеристик) в 6 раз больше, чем у электролитов. Обычно эти детали без проблем работают не менее 5 лет.

Долговечность танталовых конденсаторов

Танталовые конденсаторы имеют более длительный срок хранения. Электрические параметры этих конденсаторов существенно не меняются при долгом хранении. В отличие от алюминиевых электролитических конденсаторов, танталовые обладают более высокой стабильностью и их емкость не ухудшается со временем. 

Многочисленные исследования показали что такие конденсаторы можно хранить в течение длительного периода времени с небольшими изменениями электрических характеристик или вообще без них. Тем не менее имеется небольшое изменение тока утечки, когда танталовый конденсатор хранится в неблагоприятных условиях.

Хранение танталовых конденсаторов при высоких температурах может вызвать значительное изменение этого тока, но нормальный ток утечки восстанавливается когда напряжение подается на компонент в течение короткого времени. Небольшие изменения или отсутствие изменений тока утечки замечены, когда эти конденсаторы хранятся при низких температурах. При хранении танталовых конденсаторов рекомендуется следовать инструкциям производителя. 

Как обозначаются танталовые конденсаторы?

Главное отличие от остальных видов устройств – использование знака µ для ёмкости. Латинскую букву v добавляют после соответствующего числа, чтобы быстро понять, какое напряжение у прибора. Имеются также дополнительные коды, используемые для следующих параметров:

  • Завод-изготовитель.
  • Дата выпуска.
  • Вариант исполнения.


Маркировка Изучение инструкции и описания на официальном сайте производителя поможет получить дополнительную информацию, связанную с той или иной конкретной моделью конденсатора. Особенно тщательно следует изучить пошаговое руководство по монтажу изделия. Например, при установке на печатную плату, в большинстве случаев пользуются обычной ручной пайкой, либо инфракрасным нагревом со специальной камерой.

Важно! Чтобы предотвратить разрушения оксидного слоя и возникновение прочих дефектов, рекомендуется придерживаться допустимого температурного диапазона, указанного производителем

Сферы применения тантала

Указанные свойства дают возможность весьма широко применять его в разных сферах промышленности. Отметим подробно основные направления использования такого уникального материала, как тантал.

Металлургическая промышленность

Металлургия является основным потребителем этого металла. На металлургическую отрасль приходится потребление 45% производимого тантала.

Основное применение тантала заключается в ряде следующих немаловажных аспектов:

  • металл является основным легирующим элементом при изготовлении жаропрочных и антикоррозийных марок стали;
  • карбид тантала является надежной защитой для стальных форм в литейном производстве.

Электротехническая промышленность

Прежде всего, стоит отметить тот факт, что четвертая часть производимого в мире тантала используется в электротехнической отрасли промышленности. И это неудивительно, ведь с применением этого металла производятся следующие виды электротехнической продукции:

  • танталовые конденсаторы электролитического вида характеризируются стабильностью своего функционирования;
  • широко применяется при изготовлении таких конструктивных элементов ламп, как аноды, катоды косвенного накала и сетки;
  • проволоку из тантала используют при производстве криотронных деталей, являющихся неотъемлемыми элементами вычислительной техники;
  • из этого металла весьма успешно изготавливают нагреватели для печей с высокотемпературным режимом работы.

Химическая отрасль

Нужно, в первую очередь, отметить тот факт, что 20% используемого тантала уходит на потребности химической промышленности. В частности, этот металл применяется в следующих случаях:

производство следующих видов кислот:

  1. азотная;
  2. оляная;
  3. серная;
  4. фосфорная;
  5. уксусная.
  • изготовление перекиси водорода, брома и хлора;
  • изготовление химоборудования следующих видов:
  1. аэраторы;
  2. дистилляционные установки;
  3. змеевики разных видов;
  4. мешалки;
  5. клапана.

В медицинской отрасли используется не более 5% добываемого в мире тантала. В медицине этот металл весьма успешно применяется в пластической и костной хирургии, так из него изготавливают танталовые элементы для скрепления костей, наложение швов и прочее. Достигается это благодаря тому, что тантал не вредит жизнедеятельности организма, при этом не оказывает раздражения на живую ткань.

В военно-оборонном комплексе применяют при изготовлении боеприпасов в качестве металлической облицовки кумулятивных снарядов, что в значительной степени улучшает из бронестойкость.

В ювелирной отрасли металл в некоторых случаях может весьма успешно заменить платину. Из платины, как правило, изготовляются многие виды ювелирных украшений и корпуса для часов.

В приборостроении применяется при изготовлении точного контрольного оборудования, диафрагм различных типов и рентгеновского оборудования различных типов.

В ядерной энергетике тантал применяется при изготовлении теплообменников для ядерно-энергетических установок.

При изготовлении электровакуумных приборов также применяется благодаря свойству поглощать газы.

Таким образом, мы осветили все важные аспекты применения тантала в разных сферах промышленности.

Искренне надеемся, что изложенная информация, в значительной степени расширит ваш кругозор в вопросе применения тантала.

Рейтинг: /5 —
голосов

Другие способы маркировки ёмкости конденсаторов

В случае четырёхзначной маркировки на конденсаторе она расшифровывается также как описано выше. Только ёмкость закодирована тремя цифрами и только последняя — минусовая степень 10.

Ещё десятичные указатели заменяют мультипликаторами. Это условное обозначение единиц измерения.

  • p — пикофарад;
  • n — нанофарад;
  • μ — микрофарад;
  • m — миллифарад.

Причём играет роль и место буквы по отношению к цифрам. Она ставится вместо запятой. При расшифровке маркировки конденсаторов такого типа мысленно ставим запятую на место буквы. Рассмотрим несколько примеров чтобы было понятнее о чём идёт речь.

В цифробуквенных кодировках ставят буквы на место запятой

  • p50 — это 0,5 пФ;
  • 1p5 — это 1,5 пФ;
  • 15p — это 15 пФ;
  • 150p — расшифровывается как 150 пФ.

С другими буквами маркировка конденсаторов такого типа расшифровывается аналогично. В маркировке конденсаторов российского производства используются аналогичные буквы российского алфавита. Для пикофарад — п, для микрофарад — мк, для милифарад — м, нанофарды — н.

Кодировка номинального напряжения конденсатора Напряжение
m 25V
I 40 (50)V
a 63V
b 100V
c 160V
d 250V
e 400V
f 630V
h 1000V
i 1600V
без маркировки 500V

Номинальное напряжение указывает при каком максимальном значении конденсатор может работать длительное время без изменения свойств. Оно кодируется маленькими латинскими буквами. Стоять может в любом месте. Перед числовым значением, после него, в первой или второй строчке.

Конденсаторы из тантала

Выбор этого материала обоснован особенностями слоя оксида, который формируется на поверхности. Именно параметрами данного слоя определяется накопительная емкость конденсатора. В ходе специальной технологической обработки заготовки из тантала не слишком сложно контролировать толщину, проводимость, равномерность структуры, другие важнейшие характеристики рабочей зоны.

На рисунке отмечены основные компоненты типовой конструкции:

  1. компаунд, формирующий корпус;
  2. вывод (катод) для монтажа пайкой на печатной плате;
  3. адгезивный слой из серебра;
  4. комбинированное покрытие из серебра и графита;
  5. оксид (MnO2) с электролитическими характеристиками;
  6. анод из гранулированного тантала со слоем пентаоксида (Ta2O5);
  7. маркировочная линия;
  8. анодный вывод для пайки.

Следует отметить аморфность оксидного слоя, обеспечивающую увеличенное сопротивление в сравнении с кристаллическим аналогом. Серебро и графит применены для получения обратного эффекта – лучшей проводимости. При чрезмерном перегреве происходит пробой диэлектрика. Если размеры повреждений невелики, возможно самостоятельное восстановление. Эти особенности надо учитывать при выполнении монтажных операций и в процессе эксплуатации.

Прочная конструкция рассчитана на сохранение целостности при значительных механических нагрузках. С помощью точного воспроизведения технологических процессов производители поддерживают единство технических параметров каждой партии готовых изделий.

Рабочие характеристики (номиналы) показаны на примере типовой 293-й серии D

  • емкость, мкФ – от 0,1 до 1 000;
  • напряжение, В – от 4 до 75;
  • мощность рассеиваемая – от 0,075 до 0,165 Вт при 25°C.

Полное сопротивление (импеданс) зависит от частоты. По графику видно, как быстро уменьшается сопротивление в диапазоне 1-100 кГц. Эквивалентное последовательное сопротивление обозначают стандартной аббревиатурой ESR.

Цена

Несомненно, класс точности оказывает влияние на стоимость прибора, хотя для бытовых потребителей это и не сказывается существенно на стоимости. Если же есть необходимость приобрести лабораторное оборудование, тогда придется отдать сумму большую, чем за бытовой счетчик, что обусловлено использованием более дорогостоящих элементов и материалов.

Отзывы о Натрия Тетраборате

Область применения

Благодаря тому, что монтажный провод ПВ-1 обладает устойчивостью к механическим повреждениям, поражению плесенью и к тому же имеет самозатухающую изоляцию, его рекомендуется использовать в силовых и осветительных линиях в следующих целях:

  • Монтаж электропроводки в трубах.
  • Прокладка линии в пустотных каналах строительных конструкций.
  • Электромонтаж в лотках.
  • Заземление электроустановок.

Помимо этого допускается использовать данный проводник, как внутренний элемент изделий, только если в этих местах исключается образование конденсата.

Напоследок хотелось бы отметить, что в нынешнее врем провод марки ПуВ (аналог) выпускает множество производителей, в том числе и такие заводы изготовители, как «Беларускабель», «Камский Кабель», «Кавказкабель».

Много прибыли из небольших деталей

Интересный факт заключается в том, что практически треть производимого тантала уходит под изготовление конденсаторов на основе этого материала. Элемент используется как анод радиоэлектронных емкостей, имеющий форму высокопористой гранулированной таблетки. Преимущество танталовых конденсаторов – продолжительность срока эксплуатации. Однако даже более стойкие изделия со временем приходят к непригодному состоянию.

Несомненно, рынок использованных танталовых конденсаторов не переполнен продукцией, поступающей из военного комплекса, вследствие сложности их реализации. Но изъять емкости из бытовых приборов, для рядового охотника за редкими металлами не проблема.

Танталовые конденсаторы. На самом деле добыча тантала из радиодеталей очень сомнительна

Марок конденсаторов, содержащих танталовые аноды, насчитывается более трех десятков, однако серий при этом, только две: К52 и К53. Следует отметить, что содержание тантала в емкостях варьируется достаточно широко. Нижний предел составляет 80 грамм, тогда как максимальный вес достигает 40 килограмм, обе величины приведены из расчета на тысячу единиц использованной продукции.

Наиболее танталовосодержащими емкостями оказываются изделия марок К52-5 4 и К52-7А. В целом, вся серия конденсаторов К52 содержит более грамма тантала на единицу продукции, за исключением нескольких габаритных моделей. Единственная белая ворона – марка К52-10. В этом изделии отсутствие тантала компенсируется высоким содержанием палладия.

Маркировка советских резисторов

Такие изделия выпускали по собственным стандартам, которые отличались от международных. Для обозначения номинала использовали цифры с буквенным разделителем. Отдельно обозначали тип резистора и мощность.

Пример (МЛТ-2 1К2 5%):

  • МЛТ – металлопленочный резистор с лаковым покрытием;
  • 2 – мощность рассеивания 2 Вт;
  • 1К2 – номинальное сопротивление 1,2кОм;
  • 5% – возможное отклонение (допуск).

Мощность советских резисторов можно определить по размеру

Приведенные сведения пригодятся для выбора подходящих компонентов при создании новых и в ходе ремонта вышедших из строя радиотехнических устройств. Следует помнить о том, что прецизионные компоненты стоят дорого. Их применяют только при необходимости.

В цепях питания светодиодов и некоторых других схемах нужна повышенная точность. Если не получится найти подходящий номинал в серийных рядах, создают параллельные и последовательные соединения. В отдельных случаях применяют подстроечные резисторы. Для корректного выбора нужно учитывать рассеиваемую мощность и дополнительные характеристики.

С применением ручных методик и специальных таблиц определить электрическое сопротивление и другие технические параметры несложно. Для ускорения процесса можно узнать номинал резистора по полоскам онлайн с помощью специализированного калькулятора. Следует не забывать о возможности получения необходимых данных с использованием измерительной аппаратуры.

Видео

В наш бурный век электроники главными преимуществами электронного изделия являются малые габариты, надежность, удобство монтажа и демонтажа (разборка оборудования), малое потребление энергии а также удобное юзабилити (от английского – удобство использования). Все эти преимущества ну никак не возможны без технологии поверхностного монтажа – SMT технологии (Surface Mount Technology), и конечно же, без SMD компонентов.

Что такое SMD компоненты

SMD компоненты используются абсолютно во всей современной электронике. SMD (Surface Mounted Device), что в переводе с английского – “прибор, монтируемый на поверхность”. В нашем случае поверхностью является печатная плата, без сквозных отверстий под радиоэлементы:

В этом случае SMD компоненты не вставляются в отверстия плат. Они запаиваются на контактные дорожки, которые расположены прямо на поверхности печатной платы. На фото ниже контактные площадки оловянного цвета на плате мобильного телефона, на котором раньше были SMD компоненты.

Плюсы SMD компонентов

Самыми большим плюсом SMD компонентов являются их маленькие габариты. На фото ниже простые резисторы и SMD резисторы:

Благодаря малым габаритам SMD компонентов, у разработчиков появляется возможность размещать большее количество компонентов на единицу площади, чем простых выводных радиоэлементов. Следовательно, возрастает плотность монтажа и в результате этого уменьшаются габариты электронных устройств. Так как вес SMD компонента в разы легче, чем вес того же самого простого выводного радиоэлемента, то и масса радиоаппаратуры будет также во много раз легче.

У простых радиоэлементов всегда есть паразитные параметры. Это может быть паразитная индуктивность или емкость. Вот, например, эквивалентная схема простого конденсатора, где сопротивление диэлектрика между обкладками, R – сопротивление выводов, L – индуктивность между выводами.

В SMD компонентах эти параметры минимизированы, потому как их габариты очень малы. Вследствие этого улучшается качество передачи слабых сигналов, а также возникают меньшие помехи в высокочастотных схемах, благодаря меньшим значениям паразитных параметров.

SMD компоненты намного проще выпаивать. Для этого нам потребуется паяльная станция с феном. Как выпаивать и запаивать SMD компоненты, можете прочитать в статье как правильно паять SMD. Запаивать их намного труднее. На заводах их располагают на печатной плате специальные роботы. Вручную на производстве их никто не запаивает, кроме радиолюбителей и ремонтников радиоаппаратуры.

Многослойные платы

Так как в аппаратуре с SMD компонентами очень плотный монтаж, то и дорожек в плате должно быть больше. Не все дорожки влезают на одну поверхность, поэтому печатные платы делают многослойными. Если аппаратура сложная и имеет очень много SMD компонентов, то и в плате будет больше слоев. Это как многослойный торт из коржей. Печатные дорожки, связывающие SMD компоненты, находятся прямо внутри платы и их никак нельзя увидеть. Пример многослойных плат – это платы мобильных телефонов, платы компьютеров или ноутбуков (материнская плата, видеокарта, оперативная память и тд).

Подведем итоги

Для большинства конденсаторов срок хранения зависит от условий. Электрические характеристики хранимых конденсаторов меняются в основном в зависимости от этих условий, в частности от температуры и влажности. 

Для некоторых конденсаторов, таких как алюминиевые электролитические, температура хранения определяет скорость химических реакций происходящих в компоненте — такие конденсаторы, хранящиеся при высоких температурах теряют свою емкость быстрее чем конденсаторы, хранящиеся при низких температурах. Некоторые конденсаторы необходимо переформировать после длительного хранения без подзарядки.

Оцените статью
Рейтинг автора
5
Материал подготовил
Илья Коршунов
Наш эксперт
Написано статей
134
Добавить комментарий