Тепловое реле для электродвигателя

Назначение

Сразу же хотелось бы сказать о том, что существуют различные виды и типы тепловых реле и соответственно область применения каждой классификации своя собственная. Вкратце поговорим о назначении основных разновидностей устройств.

РТЛ — трехфазное, предназначено для защиты электродвигателя от перегрузок, перекоса фаз, затянутого пуска или заклинивания ротора. Крепятся на контакты пускатели ПМЛ или как самостоятельное устройство с клеммами КРЛ.

РТТ — на три фазы, предназначены для защиты короткозамкнутых двигателей от токов перегрузки, перекоса фаз, заклинивания ротора двигателя, затянутого запуска механизма. Может крепиться на ПМА и ПМЕ пускатели, а также самостоятельно устанавливаться на панели.

РТИ — защищают электромотор от перегрузки, асимметрии фаз, длинного пуска и заклинивания машины. Трехфазное тепловое реле, крепится на пускатели серии КМТ и КМИ.

ТРН — двухфазное реле, контролирует режим работы и пуска, имеет только ручной возврат контактов, работа устройства мало зависит от температуры окружающей среды.

Твердотельные трехфазное реле, не имеют подвижных деталей, не зависят от состояния окружающей среды, применяют во взрывоопасных местах. Следит за током нагрузки, разгоном, обрывом фаз, заклиниванием механизма.

РТК — контроль температуры происходит щупом, расположенным в корпусе электроустановки. Представляет собой термо реле, и контролирует только один параметр.

РТЭ — реле плавления сплава, электропроводящий проводник выполнен из сплава металла, при определенной температуре плавится и механически разрывает цепь. Данное тепловое реле встраивается непосредственно в контролируемое устройство.

Как видно из нашей статьи, существует большое разнообразие контроля за состоянием электроустановок, отличающихся типом и внешним видом, но одинаково выполняющих защиту электрооборудования. Это и все, что хотелось рассказать вам об устройстве, принципе действия и назначении тепловых реле. Надеемся, информация была для вас полезной и интересной!

Будет интересно прочитать:

  • Как работает магнитный пускатель
  • Как выбрать тепловое реле
  • Что такое степень защиты IP
  • Какие бывают реле времени

Причины, вызывающие перегрев

На первом месте стоят неисправности радиатора. Это могут быть: простое загрязнение тополиным пухом, пылью, листвой. Устранив загрязнения, решат проблему. Более проблематично бороться с внутренним загрязнением радиатора — накипью, появляющейся при использовании герметиков.

Затем следуют:

Разгерметизация системы, вызванная треснувшим шлангом, недостаточно затянутыми хомутами, неисправностью краника отопителя, состарившимся уплотнителем насоса и пр.; Неисправный термостат или краник

Определить это легко, если при горячем двигателе осторожно ощупать шланг или радиатор. Если шланг холодный – причина в термостате и потребуется его замена; Помпа, работающая неэффективно или вовсе неработающая

Это приводит к слабой циркуляции по охлаждающей системе; Сломанный вентилятор, т.е. не включающийся из-за вышедшего из строя мотора, муфты включения, датчика, отошедшего провода. Не крутящаяся крыльчатка тоже вызывает перегрев электродвигателя; Наконец, недостаточное уплотнение камеры сгорания. Это последствия перегрева, приводящие к сгоранию прокладки головки, образованию трещин и деформированию головки цилиндра и гильзы. Если из бачка с охлаждающей жидкостью заметно вытекание, приводящее к резкому повышению давления при запуске охлаждения, или появилась в картере маслянистая эмульсия, значит, причина в этом.

Дабы не попасть в аналогичную ситуацию, необходимо проводить профилактику, способную спасти от перегрева и поломки. «Слабое звено» определяют методом исключения, т.е. проверяют последовательно подозрительные детали.

Автоматическая защита двигателя

Автоматы для защиты электродвигателей помогают обезопасить обмотку от появления короткого замыкания, защищают от нагрузки либо обрыва любой из фаз. Их всегда используют в качестве первого звена защиты в сети питания мотора. Потом используется магнитный пускатель, если необходимо он дополняется тепловым реле.

Каковы критерии выбора, подходящего автомата:

  • Необходимо учитывать величину рабочего тока электродвигателя;
  • Количество, использующихся обмоток;
  • Возможность автомата справляться с током в результате короткого замыкания. Обычные версии работают на уровне до 6 кА, а лучшие до 50 кА. Стоит учитывать и скорость срабатывания у селективных менее 1 секунды, нормальных меньше 0,1 секунды, быстродействующих около 0,005 секунды;
  • Размеры, поскольку большая часть автоматов можно подключать с помощью шины на основе фиксированного типа;
  • Вид расцепления цепи – обычно применяется тепловой либо электромагнитный способ.

Функции реле перегрузки

Реле перегрузки:

• При пуске электродвигателя позволяют выдерживать временные перегрузки без разрыва цепи.

• Размыкают цепь электродвигателя, если ток превышает предельно допустимое значение и возникает угроза повреждения электродвигателя.

• Устанавливаются в исходное положение автоматически или вручную после устранения перегрузки.

IEC и NEMA стандартизуют классы срабатывания реле перегрузки.

Обозначение класса срабатывания

Как правило, реле перегрузки реагируют на условия перегрузки в соответствии с характеристикой срабатывания. Для любого стандарта (NEMA или IEC) деление изделий на классы определяет, какой период времени требуется реле на размыкание при перегрузке. Наиболее часто встречающиеся классы: 10, 20 и 30. Цифровое обозначение отражает время, необходимое реле для срабатывания. Реле перегрузки класса 10 срабатывает в течение 10 секунд и менее при 600% тока полной нагрузки, реле класса 20 срабатывает в течение 20 секунд и менее, а реле класса 30 — в течение 30 секунд и менее.

Угол наклона характеристики срабатывания зависит от класса защиты электродвигателя. Электродвигатели IEC обычно адаптированы к определённому варианту использования. Это означает, что реле перегрузки может справляться с избыточным током, величина которого очень близка к максимальной производительности реле. Класс 10 — самый распространённый класс для электродвигателей IEC. Электродвигатели NEMA имеют внутренний конденсатор большей ёмкости, поэтому класс 20 для них применяется чаще.

Реле класса 10 обычно используется для электродвигателей насосов, так как время разгона электродвигателей составляет около 0,1-1 секунды. Для многих высокоинерционных промышленных нагрузок необходимо для срабатывания реле класса 20.

Сочетание плавких предохранителей с реле перегрузки

Плавкие предохранители служат для того, чтобы защитить установку от повреждений, которые могут быть вызваны коротким замыканием. В связи с этим плавкие предохранители должны иметь достаточную ёмкость. Более низкие токи изолируются с помощью реле перегрузки. Здесь номинальный ток плавкого предохранителя соответствует не рабочему диапазону электродвигателя, а току, который может повредить наиболее слабые составляющие установки. Как было упомянуто ранее, плавкий предохранитель обеспечивает защиту от короткого замыкания, но не защиту от перегрузок при низком токе.

На рисунке представлены наиболее важные параметры, формирующие основу согласованной работы плавких предохранителей в сочетании с реле перегрузки.

Очень важно, чтобы плавкий предохранитель сработал прежде, чем другие детали установки получат тепловое повреждение в результате короткого замыкания

Как подобрать электродвигатель: условия

В настоящее время, использование электродвигателей достаточно широко. Данные устройства, применяются в различном оборудовании (вентиляционные системы, насосные станции или электротранспорт). Для каждого вида машин, нужен правильный выбор и настройка двигателей.

Критерии выбора:

  • Тип тока;
  • Мощность устройства;
  • Работа.

По типу электрического тока, электродвигатели разделяют на устройства, работающие на переменном и постоянном токе.

Стоит отметить, что двигатели на постоянном токе, зарекомендовали себя с лучшей стороны, но из-за необходимости установки дополнительного оборудования для обеспечения их работы, требуются и дополнительные финансовые затраты.

Двигатели, работающие на переменном токе, нашли достаточно широкое применение. Их разделяют на два вида (синхронные и асинхронные).

Синхронные устройства, используют для оборудования, в котором важно постоянное вращение (генераторы и компрессоры). Отличаются и различные характеристики синхронных двигателей

Например, скорость вращения варьируется в пределах от 120 до 1000 оборотов в минуту. Мощность устройств достигает 10 кВт.

В промышленности, распространено использование асинхронных двигателей. Стоит отметить, что данные устройства обладают более высокими показателями вращения. Для их изготовления, в основном используют алюминий, что позволяется изготавливать легкие роторы.

Исходя из того, что во время работы двигатель, производит постоянное вращение различных устройств, необходимо правильно подбирать его мощность. Стоит отметить, что для различных устройств, существует специальная формула, согласно которой и производится выбор.

Определяющим фактором нагрузки на двигатели, является режим работы. Поэтому, выбор устройства производят согласно и данной характеристике. Существует несколько режимов работы, которые маркируются (S1 – S9). Каждый из девяти режимов, подходит для определенной работы двигателя.

Особенности монтажа

Как правило, установку теплового реле производят совместно с магнитным пускателем, который и осуществляет коммутацию и запуск электропривода. Однако существуют также и приборы с возможностью установки как отдельное устройство рядом на монтажной панели или DIN рейке, такие как ТРН и РТТ. Все зависит от наличия нужного номинала в ближайшем магазине, складе или в гараже в «стратегических запасах».

Наличие у теплового реле ТРН только двух входящих подключений не должно вас пугать, поскольку фазы три. Неподключенный провод фазы уходит с пускателя на двигатель, минуя реле. Ток в электродвигателе меняется пропорционально во всех трех фазах, поэтому контролировать достаточно любые две из них. Собранная конструкция, пускатель с теплушкой ТРН будет выгладить так: Или так с РТТ:

Рассмотрим схему из статьи в которой трехфазный двигатель вращается в одну сторону и управление включением осуществляется с одного места двумя кнопками СТОП И ПУСК.

Автомат включен и на верхние клеммы пускателя поступает напряжение. После нажатия на кнопку ПУСК, катушка пускателя А1 и А2 оказывается подключена к сети L2 и L3. В данной схеме используется пускатель с катушкой на 380 вольт, вариант подключения с однофазной катушкой 220 вольт ищите в нашей отдельной статье (ссылка выше).

Катушка включает пускатель и замыкаются дополнительные контакты No(13) и No(14), теперь можно отпустить ПУСК, контактор останется включенным. Данная схема называется «пуск с самоподхватом». Теперь для того чтобы отключить двигатель от сети необходимо обесточить катушку. Проследив по схеме путь тока, видим что это может произойти при нажатии СТОП или размыкании контактов теплового реле (выделен красным прямоугольником).

То есть, при возникновении внештатной ситуации, когда теплушка сработает, она разорвет цепь схемы и снимет пускатель с самоподхвата, обесточив двигатель от сети. При срабатывании данного устройства контроля тока, перед повторным запуском необходимо осмотреть механизм, для выяснения причины возникновения отключения, и не включать до ее устранения. Часто причиной срабатывания является высокая внешняя температура окружающего воздуха, данный момент необходимо учитывать при эксплуатации механизмов и их настройке.

Сфера применения в домашнем хозяйстве тепловых реле не ограничивается только самодельными станками и прочими механизмами. Правильно было бы использовать их в системе контроля тока насоса системы отопления. Специфика работы циркуляционного насоса в том, что на лопастях и улитке образуется известковый налет, который может стать причиной заклинивания мотора и выхода его из строя. Используя приведенные схемы подключения, можно собрать блок контроля и защиты насоса. Достаточно установить в цепи питания нужный номинал теплушки и подключить контакты.

Кроме того будет интересна схема подключения теплового реле через трансформаторы тока, для мощных двигателей, таких как насос системы водополива для дачных поселков или фермерских хозяйств. При установке трансформаторов в цепи питания, учитывается коэффициент трансформации, к примеру 60/5 это при токе через первичную обмотку в 60 ампер, на вторичной обмотке он будет равен 5А. Применение такой схемы позволяет сэкономить на комплектующих, при этом не потеряв в эксплуатационных характеристиках.

Как видно, красным цветом выделены трансформаторы тока, который подключены к реле контроля и амперметру для визуальной наглядности происходящих процессов. Трансформаторы подключены схемой звезда, с одной общей точкой. Такая схема не представляет из себя больших трудностей в реализации, поэтому вы можете самостоятельно ее собрать и подключить к сети.

Напоследок рекомендуем просмотреть видео, в котором наглядно показывается процесс подключения теплового реле к магнитному пускателю для защиты электродвигателя:

Тепловая защита электродвигателя. Электротепловое релеТепловая защита электродвигателя. Электротепловое реле

Вот и все, что вы должны знать о подключении теплового реле своими руками. Как вы видите, монтаж не представляет особой сложности, главное правильно составить схему подсоединения всех элементов в цепи!

Будет интересно прочитать:

  • В чем отличия между контактором и магнитным пускателем
  • Что такое релейная защита
  • Как собрать трехфазный щит

Причины, вызывающие перегрев

На первом месте стоят неисправности радиатора. Это могут быть: простое загрязнение тополиным пухом, пылью, листвой. Устранив загрязнения, решат проблему. Более проблематично бороться с внутренним загрязнением радиатора — накипью, появляющейся при использовании герметиков.

Затем следуют:

Разгерметизация системы, вызванная треснувшим шлангом, недостаточно затянутыми хомутами, неисправностью краника отопителя, состарившимся уплотнителем насоса и пр.;
Неисправный термостат или краник

Определить это легко, если при горячем двигателе осторожно ощупать шланг или радиатор. Если шланг холодный – причина в термостате и потребуется его замена;
Помпа, работающая неэффективно или вовсе неработающая

Это приводит к слабой циркуляции по охлаждающей системе;
Сломанный вентилятор, т.е. не включающийся из-за вышедшего из строя мотора, муфты включения, датчика, отошедшего провода. Не крутящаяся крыльчатка тоже вызывает перегрев электродвигателя;
Наконец, недостаточное уплотнение камеры сгорания. Это последствия перегрева, приводящие к сгоранию прокладки головки, образованию трещин и деформированию головки цилиндра и гильзы. Если из бачка с охлаждающей жидкостью заметно вытекание, приводящее к резкому повышению давления при запуске охлаждения, или появилась в картере маслянистая эмульсия, значит, причина в этом.

Дабы не попасть в аналогичную ситуацию, необходимо проводить профилактику, способную спасти от перегрева и поломки. «Слабое звено» определяют методом исключения, т.е. проверяют последовательно подозрительные детали.

Подбор номинала автоматического выключателя по сечению провода

Определив номинал автомата, исходя из мощности «подвешенной» нагрузки, необходимо убедиться в том, что электропроводка выдержит соответствующий ток. В качестве ориентира можно воспользоваться нижеприведённой таблицей, составленной для медного провода и однофазной цепи (таблица 3):

Сечение

жилы, кв.мм

Допустимый

ток, А

Макс. мощность

нагрузки, кВт

Ток

автомата, А

Возможные

потребители

1,5
19
4,2
16
Освещение, сигнализация

2,5
27
6,0
25
Розеточная группа, тёплый пол

4
38
8,4
32
Кондиционер, водогрейка

6
46
10,1
40
Электроплита, духовка

Как видим, все три показателя (мощность, сила тока и сечение провода) взаимосвязаны, поэтому номинал автомата можно, в принципе, выбирать по любому из них. В то же время необходимо убедиться, что все параметры стыкуются между собой, и при необходимости сделать соответствующую корректировку.

При любом раскладе следует помнить следующее:

  1. Установка чрезмерно мощного автомата может привести к тому, что до его срабатывания электрооборудование, не защищённое собственным предохранителем, выйдет из строя.
  2. Автомат с заниженным числом ампер способен стать источником нервных стрессов, обесточивая дом или отдельные помещения при включении электрочайника, утюга или пылесоса.

Давно прошло время керамических пробок, которые вкручивались в домашние электрические щитки. В настоящее время широкое распространение получили различные типы автоматических выключателей, выполняющих защитные функции. Данные устройства очень эффективны при коротких замыканиях и перегрузках. Очень многие потребители еще не до конца освоили эти приборы, поэтому нередко возникает вопрос, какой автомат нужно поставить на 15 кВт. От выбора автомата полностью зависит надежная и долговечная работа электрических сетей, приборов и оборудования в доме или квартире.

4.2. Максимальная токовая защита лэп

Принцип действия и селективности
защиты.
Максимальные токовые защиты
(МТЗ) являются основным видом РЗ для
сетей с односторонним питанием. Они
устанавливаются в начале каждой ЛЭП со
стороны источника питания (рис. 4.1, а).
Каждая ЛЭП имеет самостоятельную РЗ,
отключающую ЛЭП в случае повреждения
на ней самой или на шинах питающейся от
нее ПС, и резервирующую РЗ соседней ЛЭП.

При КЗ в какой-либо тонке сети, например
в точке К1 (рис. 4.1, а), ток КЗ проходит по
всем участкам сети, расположенным между
источником питания и местом повреждения,
в результате чего приходят в действие
все РЗ (1, 2, 3, 4). Однако по условию
селективности сработать на отключение
должна только РЗ 4, установленная на
поврежденной ЛЭП. Для обеспечения
указанной селективности МТЗ выполняются
с выдержками времени, нарастающими от
потребителей к источнику питания, как
это показано на рис. 4.1, б. При соблюдении
этого принципа в случае КЗ в точке К1
раньше других сработает МТЗ 4 и отключит
поврежденную ЛЭП. Защиты 1, 2 и 3, имеющие
большие выдержки времени, вернутся в
начальное положение, не успев подействовать
на отключение. Соответственно при КЗ в
точке К2 быстрее всех сработает МТЗ 3, а
МТЗ 1 и 2, имеющие большее время, не успеют
подействовать.

Разновидности максимальной токовой
защиты.
Максимальные токовые защиты
выполняются на электромеханических и
статических реле прямого и косвенного
действия (см. § 1.8) по трех- и двухфазным
схемам (см. § 3.5). По способу питания
оперативных цепей МТЗ косвенного
действия делятся на РЗ с постоянным и
переменным оперативным током. По
характеру зависимости времени действия
от тока МТЗ подразделяются на РЗ с
независимой и зависимой характеристиками
(рис. 4.1, в).

Защита автомобильного двигателя

Перегрев электродвигателя грозит и водителям автомобилей с наступлением жары, да еще с последствиями разной сложности – от поездки, которую придется отменить, до капитального ремонта мотора, у которого от перегрева прихватить может поршень в цилиндре или деформироваться головка.

Во время езды охлаждается электродвигатель воздушным потоком, а когда авто попадает в пробки этого не происходит, что и вызывает перегрев. Чтобы его распознать вовремя, периодически следует посматривать на датчик (при наличии такового) температуры. Как только стрелка окажется в красной зоне, необходимо немедленно остановиться для выявления причины.

Как быть в подобной ситуации? Остановиться, заглушив электродвигатель и подождать, пока прекратится кипение, открыть капот. На это уходит обычно до 15 минут. При отсутствии признаков протекания, доливают жидкость в радиатор, и пробуют завести мотор

Если же температура начнет резко расти, осторожно движутся для выяснения причины в сервис для диагностики

Разновидности максимально-токовых защит

Максимально-токовые защиты по виду время-токовой характеристики подразделяются:

  • МТЗ с независимой от тока выдержкой временем
  • МТЗ с зависимой от тока выдержкой времени
  • МТЗ с ограниченно-зависимой от тока выдержкой времени

Применяются также комбинированный вид защиты МТЗ — Максимально-токовая защита с пуском (блокировкой) от реле минимального напряжения.

МТЗ с независимой от тока выдержкой времени

МТЗ с независимой от тока выдержкой времени имеет во всём рабочем диапазоне величину выдержки времени, независимую от тока (время-токовая характеристика в виде прямой, отстоящей от оси абсцисс на величину времени выдержки tсраб; при токе, равном и меньшем тока срабатывания время-токовая характеристика скачкообразно становится равной нулю).

МТЗ с зависимой от тока выдержкой времени

МТЗ с зависимой от тока выдержкой времени имеет нелинейную обратную зависимость выдержки времени от тока (обычно время-токовая характеристика близка к гиперболе, как к кривой постоянной мощности). Применение МТЗ с зависимой от тока выдержкой времени позволяет учитывать перегрузочную способность оборудования и осуществлять т.н. «защиту от перегрузки».

МТЗ с ограниченно-зависимой от тока выдержкой времени

Характеристика МТЗ с ограниченно-зависимой от тока выдержкой времени состоит из двух частей, в первой части зависимость времени от тока-гиперболическая, вторая часть-независимая (или почти независимая)-время-токовая характеристика состоит из плавно сопряжённых гиперболы и прямой. Переход из независимой в зависимую часть характеристики может происходить при малых кратностях от тока срабатывания (150%)-т.н. «крутая характеристика», и при больших кратностях (300-400%)- т.н. «пологая характеристика» (обычно МТЗ с «пологой характеристикой» применяются для защит двигателей большой мощности для лучшей отстройки от пусковых токов).

МТЗ с пуском (блокировкой) от реле минимального напряжения

Для улучшения чувствительности МТЗ и отстройки её от токов нагрузки применяется ещё одна разновидность МТЗ — это максимальная токовая защита с пуском (блокировкой) от реле минимального напряжения (комбинация МТЗ и защиты минимального напряжения). Такая защита будет действовать только при повышении тока, большем или равном току уставки, сопровождающееся уменьшением напряжения в сети ниже напряжения уставки. При пуске двигателей ток в сети резко возрастает, что может привести к ложному срабатыванию защит. Для этого устанавливается реле минимального напряжения, которое не дает защитам отработать, т.к. напряжение в сети остается прежним, то и защиты соответственно не реагируют на резкое увеличение тока.

Защита от перегрузки

Защищает двигатель от длительных симметричных перегрузок, которые могут возникнуть по технологическим причинам или при снижении напряжения сети. Работает на измерении фазных токов (одного и более). Выполняется с выдержкой времени, на сигнал или отключение двигателя (в зависимости от условий работы)

Это простая и надежная защита, но она не учитывает температуру окружающей среды и полученный двигателем тепловой импульс от токов нормального режима (когда защита не пускается). Для устранения данных недостатков в микропроцессорных защитах используют тепловую модель двигателя

Защита по тепловой модели

Это еще один вариант защиты от перегрузок, только более технологичный. Основная опасность при перегрузке двигателя — это перегрев обмоток статора. Если температуру обмоток нельзя измерить непосредственно, при помощи термозондов, то пытаются предсказать температуру двигателя по заранее заданной характеристике.

Эта характеристика учитывает постоянные времени нагрева и охлаждения конкретного типа двигателей и эквивалентный ток, который состоит из геометрической суммы фазного тока и тока обратной последовательности с различными коэффициентами.

В общем алгоритм сложный, расчет уставок сложный, найти исходники на двигатель еще сложнее. Но если все получается, то вы сможете защищать двигатель от перегрузки более эффективно, чем в случае использовать максимальной токовой защиты

Защита по тепловой модели имеет несколько ступеней — на сигнализацию и на отключение. После достижения определенной точки перегрева на характеристике защита блокирует дальнейшие пуски на время охлаждения двигателя, с учетом его постоянной времени охлаждения.

Онлайн расчет емкости конденсатора мотора

Введите данные для расчёта конденсаторов — мощность двигателя и его КПД

Есть специальная формула, по которой можно высчитать требуемую емкость точно, но вполне можно обойтись онлайн калькулятором или рекомендациями, которые выведены на основании многих опытов:

Конденсаторы должны быть неполярными, то есть не электролитическими. Рабочее напряжение этих конденсаторов должно быть минимум в 1,5 раза выше, чем напряжение сети, то есть, для сети 220 В берем емкости с рабочим напряжением 350 В и выше. А чтобы пуск проходил проще, в пусковую цепь ищите специальный конденсатор. У них в маркировке присутствует слова Start или Starting.


Пусковые конденсаторы для моторов

Эти конденсаторы можно подбирать методом от меньшего к большему. Так подобрав среднюю емкость, можно постепенно добавлять и следить за режимом работы двигателя, чтобы он не перегревался и имел достаточно мощности на валу. Также и пусковой конденсатор подбирают добавляя, пока он не будет запускаться плавно без задержек.

Принцип работы

Устройство включает в себя основной элемент — чувствительную биметаллическую пластину из сплава железа и никеля и сплава железа с латунью. Эти сплавы соединяются пайкой и имеют различные коэффициенты теплового расширения, говорящем о степени удлинения нагревающейся металлической пластины. Для латуни этот показатель составляет 18,7, а для сплава железо-никель — 1,5. Так, длина латунного элемента при нагревании увеличивается гораздо быстрее, благодаря чему происходит изгиб биметаллической пластины в ее сторону. На этом свойстве основывается работа любого теплового реле.

В корпусе устройства находятся:

  • Толкатель.
  • Пружина замыкающего контакта.
  • Биметаллическая пластина с нагревательным элементом.
  • Исполнительная пластина.

Температурный компенсатор состоит из регулировочного винта и пластины.

А также реле оснащено следующими элементами:

  • Контакты.
  • Эксцентрик.
  • Движок уставки тока срабатывания.
  • Кнопка возврата устройства в рабочее состояние.

В следующей статье мы раскроем принцип работы насадки на дрель для заточки сверл.

Оцените статью
Рейтинг автора
5
Материал подготовил
Илья Коршунов
Наш эксперт
Написано статей
134
Добавить комментарий