Диэлектрики силовых пленочных конденсаторов

В каких единицах измеряется емкость конденсатора?

Основная единица для измерения ёмкости – Фарад (Ф, старое название – Фарада).

Но это очень большая величина, поэтому на практике используются её производные — пикофарад (пФ, пикофарада), нанофарад (нФ, нанофарада), микрофарад (мкФ, микрофарада).

Один микрофарад = 1 000 нанофарад = 1 000 000 пикофарад.

В компьютерных блоках питания и в материнских платах используются электролитические конденсаторы ёмкостью несколько сотен или тысяч микрофарад.

Там же применяется малогабаритные керамические конденсаторы ёмкостью несколько сотен или тысяч пикофарад.

Керамические конденсаторы используются чаще всего в виде SMD компонентов.

Типы конденсаторов

Основная классификация конденсаторов проводится по типу используемого в нем диэлектрика, что определяет главные электротехнические характеристики конденсаторов: величину максимального напряжения, сопротивление изоляции, величину потерь, стабильность ёмкости и т. п.

Основные разновидности по виду диэлектрика:

  1. С жидким диэлектриком.
  2. Вакуумные, у которых обкладки  находятся в вакууме без диэлектрика.
  3. С газообразным диэлектриком.
  4. Электролитические и оксид-полупроводниковые конденсаторы. В качестве диэлектрика выступает оксидный слой металлического анода, а с другой электрод (катод)- это электролит, но в оксид-полупроводниковых- это полупроводниковый слой , нанесённый на оксидный слой с другой стороны. Данный тип конденсаторов обладает самой огромной удельной ёмкостью по сравнению с другими.
  5. Конденсаторы с твёрдым органическим диэлектриком— пленочные, бумажные, метало-бумажные, а так же комбинированные — бумажно-плёночные и т. п.
  6. Конденсаторы с твёрдым неорганическим диэлектриком— керамические,  стеклянные, слюдяные, из неорганических плёнок,  а так же комбинированные- стекло-керамические, стекло-эмалевые,  стекло-плёночные и др.

Различаются конденсаторы и по возможности изменения своей ёмкости:

  • Самые распространенные постоянные конденсаторы, обладающие постоянной емкостью на протяжении всего срока службы.
  • Переменные конденсаторы  применяются в радиоприемниках и не только. Они при работе аппаратуры обладают возможностью изменения ёмкости с использованием механического метода (реостат), либо изменения электрического напряжения (варикапы, вариконды) или температуры (термоконденсаторы).
  • Подстроечные конденсаторы используются для периодической или разовой подстройки или регулировки  ёмкостей  в  цепях схем, в которых необходимо незначительное изменение ёмкости для нормального функционирования устройств.

По назначению использования конденсаторы делятся на:

  • Низковольтные общего назначения, самый распространенный вид широко используемый в различных схемах.
  • Высоковольтные, используемые в цепях с высоким напряжением.
  • Пусковые, применяемые для запуска электродвигателей.
  • Импульсные, создающие импульс необходимый для работы фотовспышки, лазеров и т. п..
  • Помехоподавляющие и т. п.

Особенности конструкции и применения

Необходимо сказать о том, как свойства органических вообще и пленочных диэлектриков в частности определили конструктивные особенности и сферы применения конденсаторов этого типа. Пожалуй, главным фактором, определившим современный набор конструктивных исполнений органических конденсаторов, является неширокий по сравнению с керамическими конденсаторами температурный диапазон применения органических полимеров. Это резко снизило возможности использования полимеров в чип-конденсаторах. Речь, прежде всего, идет о процессе пайки, в результате которого может происходить температурное разрушение либо деградация конденсаторов. Дополнительные сложности в «жизнь» органических чип-конденсаторов внесло появление требований RoHS по пайке бессвинцовыми припоями. Поскольку температура плавления таких припоев выше, чем свинцовосодержащих, значительная часть известных серий, в частности пленочных конденсаторов, имеет ограничения при пайке. Часто это невозможность использовать технологию двухволновой пайки либо ограничения по времени прохождения волны припоя. Многолетняя статистика рынка, собранная в основном по пленочным конденсаторам, показывает, что 80–90% таких конденсаторов выпускается в выводном исполнении. Пайка выводов не ухудшает свойств собственно конденсатора.

Маркировка конденсаторов импортного производства

На сегодняшний день стандарты, которые были приняты от IEC, относятся не только к иностранным видам оборудования, а и к отечественным. Данная система предполагает нанесение на корпус продукции маркировки кодового типа, которая состоит из трех непосредственных цифр.

Две цифры, которые расположены с самого начала, обозначают емкость предмета и в таких единицах, как пикофарадах. Цифра, которая расположена третьей по порядку – это число нулей. Рассмотрим это на примере 555 – это 5500000 пикофарад. В том случае, если емкость изделия является меньше, чем один пикофарад, то с самого начала обозначается цифра ноль.

Есть также и трехзначный вид кодировки. Такой тип нанесения применяется исключительно к деталям, которые являются высокоточными.

Цветовая маркировка импортных конденсаторов

Обозначение наименований на таком предмете, как конденсатор, имеет такой же принцип производства, что и на резисторах. Первые полосы на двух рядах обозначают емкость данного устройства в тех же измерительных единицах. Третья полоса имеет обозначение о количестве непосредственных нулей. Но при этом полностью отсутствуют синий окрас, вместо него применяют голубой.

Важно знать, что если цвета идут одинаковые подряд, то между ними целесообразно осуществить промежутки, чтобы было четко понятно. Ведь в другом случае эти полосы будут сливаться в одну

Маркировка SMD конденсаторов

Маркировка SMD конденсатора

Первая и вторая цифры обозначают ёмкость, а третья — множитель. Для примера конденсатор на рисунке 100000000 пФ или 100 мкФ с напряжением 16 вольт.

Есть система маркировки из двух символов. Первая буква — числовое значение, вторая — множитель (степень десяти). Общее значение даёт ёмкость в пФ:

Буква A B C D E F G H J K a L
Значение 1.0 1.1 1.2 1.3 1.5 1.6 1.8 2.0 2.2 2.4 25 2.7
Буква M N b P Q d R e S f T U
Значение 3.0 3.3 3.5 3.6 3.9 4.0 4.3 4.5 4.7 5.0 5.1 5.6
Буква m V W n X t Y y Z
Значение 6.0 6.2 6.8 7.0 7.5 8.0 8.2 9.0 9.1
Цифра 1 2 3 4 5 6 7 8 9
Множитель 10 101 102 103 104 105 106 107 108 10-1

К примеру, J5 = 2,2x 105 = 220000 пФ = 0.22 мкФ, или M9 = 3.3 x 10-1 = 0.33 пФ

Танталовые конденсаторы первым символом часто указывается напряжение:

Напряжение (вольт) 4 6.3 10 16 20 25 35 50
Код G J A C D E V H

Как определить емкость конденсатора по маркировке .

Как определить емкость конденсатора по маркировке .

Классификация конденсаторов

Конденсаторы бывают различных видов, с переменной и постоянной емкостью, изолированные и неизолированные, навесного типа и с защелкивающимися выводами. Основная характеристика всех конденсаторов — это емкость и способы её изменения.

По типу емкости конденсаторы бывают:

  • Постоянными и переменными. В постоянных конденсаторах нет возможности изменять емкость, в переменных есть. Для этого в конструкции конденсаторов предусмотрена регулировка положения обкладок, посредством которых и изменяется конденсаторная емкость.
  • Нелинейные и подстроечные конденсаторы. Нелинейные конденсаторы могут менять свою емкость в зависимости от воздействия температуры. Ярким примером таких конденсаторов являются вариконды и термоконденсаторы.

Также конденсаторы классифицируются и по способу монтажа. Бывают конденсаторы навесного типа, для установки на печатные платы, с винтовыми выводами и другие.

Материалы изготовления диэлектрика в конденсаторах

Как уже упоминалось выше, между обкладками конденсатора располагается диэлектрик, материалы изготовления которого во многом влияют на свойства конденсатора. Так, например, основным изолятором в низкочастотных конденсаторах служит органическая плёнка.

В конденсаторах постоянного тока в качестве диэлектрика используется бумага и политетрафторэтилен, а также другие, комбинированные материалы.

Что нужно знать про полярность конденсаторов

Есть неполярные конденсаторы, которые могут быть включены в схему без соблюдения полярности, а есть наоборот, такие конденсаторы, где нужно строго соблюдать полярность. В первую очередь это электролитические конденсаторы или как их еще часто называют, оксидные конденсаторы.

При подключении электролитических конденсаторов очень важно придерживаться полярности. При несоблюдении этого правила конденсатор может вздуться, а его корпус разорвёт на части

Признаки неисправности конденсатора

Перед тем, как выбрать конденсатор, следует выпаять вышедшее из строя устройство и определить его параметры. Признаком нарушения работоспособности этого элемента могут служить:

  • «вздутие», деформация крышки;
  • снижение емкости и комплексного электросопротивления (импеданса): для определения их значения используется оммометр; его щупы прикладываются к одному из предварительно отпаянных выводов конденсатора; при обрыве стрелка прибора будет отклоняться в сторону «бесконечности»; на неисправность конденсатора указывает также снижение показателей его емкости;

Косвенными признаками выхода из строя одного или нескольких конденсаторов являются нестабильность работы компьютера, его периодическое «зависание», перезагрузка, увеличение потребляемой мощности одного из узлов или полный выход из строя ПК.

Маркировка отечественных конденсаторов

Многие отечественные радиоэлементы отличаются максимально полной маркировкой, при чтении которой можно почерпнуть большинство возможных характеристик элемента.

Емкость

Конденсатор электролитический

На первом месте стоит основная характеристика – электрическая емкость. Она имеет буквенно-цифровое обозначение. Для букв применяются следующие символы латинского, греческого или русского алфавита:

  • p или П – пикофарада, 1 pF = 10-3 nF = 10-6 μF = 10-9 mF = 10-12 F;
  • n или Н – нанофарада, 1 nF = 10-3 μF = 10-6 mF = 10-9 F;
  • μ или М – микрофарада, 1 μF = 10-3 mF = 10-6 F;
  • m или И – миллифарада, 1 mF = 10-3 F;
  • F или Ф – фарада.

Буква, обозначающая величину, ставится на месте запятой в дробном обозначении. Например:

  • 2n2 = 2.2 нанофарад или 2200 пикофарад;
  • 68n = 68 нанофарад или 0,068 микрофарад;
  • 680n или μ68 = 0.68 микрофарад.

Важно! Номиналы конденсаторов в пикофарадах или микрофарадах могут не иметь буквенных обозначений. К примеру, 2200 может обозначать как 2200 pF так и 2200 μF

Здесь на помощь приходят габариты конденсатора и здравый смысл.

Пример обозначения

Обратите внимание! Обозначение емкости в миллифарадах встречается крайне редко, а такая величина как фарада является очень большой и также не имеет особого распространения

Допустимое отклонение

Значения ёмкостей, указанные на корпусе, не всегда соответствует реальному значению. Это отклонение характеризует точность изготовления детали и определения его номинала. Величина разброса параметров может быть от тысячных долей процента у прецизионных деталей до десятков процентов у электролитических конденсаторов, предназначенных для фильтрации пульсаций в цепях питания, где точные цифры не имеют особого значения.

Величина допустимого отклонения обозначается буквами латинского алфавита или русскими буквами у радиодеталей старых годов выпуска.

Температурный коэффициент емкости

Маркировка ТКЕ довольно сложна, а поскольку данная величина критична в основном для малогабаритных элементов времязадающих цепей, то возможна как цветная кодировка, так и использование буквенных обозначений или комбинации обоих типов. Таблица возможных вариантов значений встречается в любом справочнике по отечественным радиокомпонентам.

Многие керамические конденсаторы, как и плёночные, имеют определенные нюансы в маркировке ТКЕ. Данные случаи оговариваются ГОСТами на соответствующие элементы.

Номинальное напряжение

Напряжение, при котором сохраняется работоспособность элемента с сохранением характеристик в заданных пределах, называется номинальным. Обычно обозначается верхний порог номинального напряжения, превышать который запрещается ввиду возможного выхода элемента из строя.

В зависимости от габаритов, возможны варианты как цифрового, так и буквенного обозначения номинального напряжения. Если позволяют габариты корпуса, то напряжение до 800 В обозначается в единицах вольт с символом V (или В для старых конденсаторов) или без него. Более высокие значения наносятся на корпус в виде единиц киловольт с обозначением символами kV или кВ.

Пример обозначения напряжения

Малогабаритные конденсаторы имеют кодированное буквенное обозначение напряжения, для чего используются буквы латинского алфавита, каждая из которых соответствует определенной величине напряжения.

Год и месяц выпуска

Дата производства также имеет буквенное обозначение. Каждому году соответствует буква латинского алфавита. Месяцы с января по сентябрь обозначаются цифрой, соответственно, от 1 до 9, октябрю соответствует 0, ноябрю буква N, декабрю – D.

Обратите внимание! Кодированное обозначение года выпуска одинаково с другими радиоэлементами

Виды конденсаторов

Конденсатор — это две металлические пластины, разделённые диэлектриком. Различают их по типу диэлектрика, материалу корпуса и способу производства пластин. Есть такие типы конденсаторов:

  • Бумажные. Пластины в нём — металлическая фольга, а диэлектрик — специальная бумага. Запаиваются они обычно в металлический корпус, так как прочностью не отличаются. Нормально себя ведут как в низкочастотных цепях, так и в высокочастотных.
  • Металлобумажные. Отличаются тем, что на бумагу нанесено металлическое напыление. Они более надёжны, при одинаковых  размерах с бумажными имеют большую ёмкость.

  • Электролитические. На металлическую фольгу (тантал или алюминий) наносится оксид, который и выполняет роль диэлектрика. Второй слой диэлектрика — электролит. Он может быть сухим или жидким. Обычно электролитическими называют с жидким электролитом. Электролитические конденсаторы практически всегда поляризованы. И при их подключении, обязательно соблюдать полярность. В противном случае они просто выйдут из строя. Бывают такие подвиды:
    • Хотя конденсаторы с сухим электролитом относятся к тому же типу, их обычно называют танталовыми. Именно с танталом обычно применяют сухой электролит.
    • Алюминиевые электролитические конденсаторы. Это когда на алюминиевую фольгу нанесён триоксид алюминия. Они имеют большую ёмкость при малых размерах, но применяться могут только в низкочастотных схемах. И ещё один недостаток — большой ток утечки.

    • Танталовыми правильно называть конденсаторы из танталовой фольги, в которых диэлектрик — пентоксид тантала. Они так же компактны, как и алюминиевые, но имеют более низкий ток утечки. И ещё — они более прочные механически.
  • Твердотельные или полимерные. В них диэлектрик — полимер. Это относительно новый тип конденсаторов. Они более устойчивы к температуре (как высокой, так и к низкой), имеют маленький ток утечки, низкое эквивалентное сопротивление и большой импульсный ток. Ими можно заменять электролитические аналоги, так как они более стабильны.

  • Плёночные. Ещё один из новых видов конденсаторов. Между металлическими пластинами проложена плёнка пластика. Это может быть поликарбонат, полиэстер, полипропилен и другие полимеры с диэлектрическими свойствами. Они более прочные механически, выдерживают высокие токи имея при этом очень малые токи утечки, стойки к пробою. Свойства отличные, но они имеют небольшую ёмкость. По совокупности характеристик обычно стоят в резонансных цепях (с возможным скачкообразным увеличением параметров).
  • Керамические. На керамическую основу наносится металлизированное напыление. Могут быть однослойными (малой ёмкости) и многослойными. Наиболее компактные конденсаторы, стойкие к механическим воздействиям. Но свойства керамических материалов сильно зависят от температуры, напряжения и частоты. Потому свойства керамических конденсаторов разные и зависят от вида использованной керамики. Для них также введена особая маркировка. Во-первых, потому что имеют малые размеры, а во-вторых, потому что делают из различной керамики и имеют большие отличия в характеристиках.

  • Высокочастотные с воздушным диэлектриком. Это специальные конденсаторы, которые радиолюбителям не встречаются.

Это все виды конденсаторов, которые можно встретить сейчас в продаже и на платах. Как видите, их немало и выглядят они совсем по-разному. Так как часть проблем с техникой связана с выходом их из строя, то неплохо было бы разбираться в их маркировке. Так уйдёт меньше времени на поиск замены.

Основные причины «вздутия» конденсатора

Можно правильно выбрать конденсатор, впаять его, и через пару дней обнаружить, что он вновь вышел из строя. Основной причиной быстрой поломки этих элементов является перегрев при:

  • недостаточной вентиляции корпуса и его перегреве свыше +45°С;
  • установке блока питания недостаточной мощности; она должна быть на 10-15% больше, чем та, которую компьютер использует в момент высшей производительности; в противном случае в цепи возникают токовые нагрузки и, как следствие, перегрев элементов.

Выход из строя конденсатора возможен также при:

несоблюдении полярности электролитических элементов при припайке;

механических повреждениях устройства.

Резисторы с нулевым сопротивлением

Виды конденсаторов

Емкостные элементы классифицируют по типу диэлектрика, применяемого в конструкции.

Бумажные и металлобумажные конденсаторы

Элементы используются в цепях с постоянным или слабо пульсирующим напряжением. Простота конструкции оборачивается пониженной на 10-25% стабильностью характеристик и возросшей величиной потерь.

В бумажных конденсаторах обкладки из алюминиевой фольги разделяет бумага. Сборки скручивают и помещают в корпус в форме цилиндра или прямоугольного параллелепипеда.

Приборы работают при температурах -60…+125°C, с номинальным напряжением у низковольтных приборов до 1600 В, высоковольтных — выше 1600 В и ёмкостью до десятков мкФ.

В металлобумажных приборах вместо фольги на диэлектрическую бумагу наносят тонкий слой металла. Это помогает изготовить элементы меньших размеров. При незначительных пробоях возможно самовосстановление диэлектрика. Металлобумажные элементы уступают бумажным по сопротивлению изоляции.

Электролитические конденсаторы

Конструкция изделий напоминает бумажные. Но при изготовлении электролитических элементов бумагу пропитывают оксидами металлов.

В изделиях с электролитом без бумаги оксид наносится на металлический электрод. У оксидов металлов односторонняя проводимость, что делает прибор полярным.

В некоторых моделях электролитических элементов обкладки изготавливают с канавками, которые увеличивают площадь поверхности электрода. Зазоры в пространстве между пластинами устраняют с помощью заливания электролитом. Это улучшает емкостные свойства изделия.

Большая ёмкость электролитических приборов — сотни мкФ, используется в фильтрах, чтобы сглаживать пульсации напряжения.

Алюминиевые электролитические

В приборах этого типа анодная обкладка делается из алюминиевой фольги. Поверхность покрывают оксидом металла — диэлектриком. Катодная обкладка — твердый или жидкий электролит, который подбирается так, чтобы при работе восстанавливался слой оксида на фольге. Самовосстановление диэлектрика продлевает время работы элемента.

Конденсаторы такой конструкции требуют соблюдения полярности. При обратном включении разорвет корпус.

Приборы, внутри которых располагаются встречно-последовательные полярные сборки, используют в 2 направлениях. Ёмкость алюминиевых электролитических элементов достигает нескольких тысяч мкФ.

Танталовые электролитические

Анодный электрод таких приборов изготовляют из пористой структуры, получаемой при нагреве до +2000°C порошка тантала. Материал внешне напоминает губку. Пористость увеличивает площадь поверхности.

С помощью электрохимического окисления на анод наносят слой пентаоксида тантала толщиной до 100 нанометров. Твердый диэлектрик делают из диоксида марганца. Готовую конструкцию прессуют в компаунд — специальную смолу.

Танталовые изделия используют на частотах тока свыше 100 кГц. Ёмкость создается до сотен мкФ, при рабочем напряжении до 75 В.

Полимерные

В конденсаторах используются электролит из твердых полимеров, что дает ряд преимуществ:

  • увеличивается срок эксплуатации до 50 тыс. часов;
  • сохраняются параметры при нагреве;
  • расширяется диапазон допустимых пульсаций тока;
  • сопротивление обкладок и выводов не шунтирует ёмкость.

Пленочные

Диэлектрик в этих моделях — пленка из тефлона, полиэстера, фторопласта или полипропилена.

Обкладки — фольга или напыление металлов на пленку. Конструкция используется для создания многослойных сборок с увеличенной площадью поверхности.

Пленочные конденсаторы при миниатюрных размерах обладают ёмкостью в сотни мкФ. В зависимости от размещения слоев и выводов контактов делают аксиальные или радиальные формы изделий.

В некоторых моделях номинальное напряжение 2 кВ и выше.

Теги

Скупка конденсаторов

Практически все виды можно отдать в скупку конденсаторов. Сделать это можно через компании, которые занимаются радиодеталями в Москве. Цена, на которую можно рассчитывать, зависит от нескольких факторов. Основным из них является процентное соотношение редкоземельных металлов, которые входят в состав конденсатора.

Самыми ценными считаются те, которые имеют маркировку КМ Н30. Это объясняется тем, что в 1 кг таких конденсаторов порядка 50 грамм ценных материалов. Далее идет KM D. В них этот показатель равен 40 граммам. Однако самыми дорогими считаются те, которые имеют маркировку 5V. В них примерно на 10% выше содержание редкоземельных материалов.

У многих в гаражах, на чердаке или в каких-либо других закромах есть ненужная техника. Вероятнее всего в ней есть и конденсаторы, которые ценятся по сегодняшний день. Не стоит спешить их выбрасывать. Во-первых, это отрицательно сказывается на экологии, а во-вторых, можно сдать радиодетали в Москве и получить за это хорошие деньги.

В компании, которая работает по лицензии есть специалисты, которые могут провести грамотную оценку. Это дает гарантию честной сделки. Частные скупщики зачастую определяют цену «на глаз», поэтому встречаются ситуации, когда она значительно занижена.

◄ Назад к новостям

Основные параметры танталовых конденсаторов

Для определения безопасного режима работы необходимо рассчитать уровни разрешенных значений тока и напряжения. Для расчетов необходимо знать следующие параметры танталовых конденсаторов, которые отражаются в документации:

  • Номинальная емкость. Эти устройства имеют высокую удельную емкость, которая может составлять тысячи микрофарад.
  • Номинальное напряжение. Современные модели этих устройств в большинстве рассчитаны на напряжения до 75 В. Причем, для нормальной работы в электрической схеме, деталь нужно использовать при напряжениях, которые меньше номинального. Эксплуатация танталовых конденсаторов при напряжениях, составляющих до 50% от номинального, снижает показатель отказов до 5%.
  • Импеданс (полное сопротивление). Содержит индуктивную составляющую, параллельное сопротивление, последовательное эквивалентное сопротивление (ESR).
  • Максимальная рассеиваемая мощность. При приложении к танталовому устройству переменного напряжения происходит выработка тепла. Допустимое повышение температуры конденсатора за счет выделяемой мощности устанавливается экспериментально.

Разновидности корпусов

Какие разновидности имеют танталовые конденсаторы? Типы конденсаторов из тантала выделяются в зависимости от материала корпуса.

  1. SMD-корпус. Для изготовления корпусных устройств, которые используются при поверхностном монтаже, катод соединяется с терминалом посредством эпоксидной смолы с содержанием серебряного наполнителя. Анод приваривается к электроду, а стрингер отрезается. После формирования устройства на него наносится печатная маркировка. Она содержит показатель номинальной емкости напряжения.
  2. При формировании этого типа корпусного устройства анодный проводник должен быть приварен к самому выводу анода, а затем отрезается от стрингера. В этом случае терминал катода припаивается к основе конденсатора. Далее конденсатор заполняется эпоксидом и высушивается. Как и в первом случае, на него наносится маркировка

Конденсаторы первого типа отличаются большей степенью надежности. Но все типы танталовых конденсаторов применятся:

  • в машиностроении;
  • компьютерах и вычислительной технике;
  • оборудовании для телевизионного вещания;
  • электрических приборах бытового назначения;
  • разнообразных блоках питания для материнских плат, процессоров и т.д.

Заключение

Как вы уже догадались, маркировка данных предметов имеет весьма широкий вариант. Особенно большое количество маркировок имеют конденсаторы, которые были произведены за границей. Довольно часто встречаются изделия не большого размера, параметры, которых можно определить с помощью специальных измерений.

Как измерить ёмкость конденсатора мультиметром?

Как определить полярность электролитических конденсаторов, где плюс и минус?

Определение номинального значения сопротивления резистора по маркировке цветовыми полосами: онлайн калькулятор

Что такое резистор и для чего он нужен?

Маркировка проводов и кабелей и расшифровка марки

Что такое конденсатор, где применяется и для чего нужен

Оцените статью
Рейтинг автора
5
Материал подготовил
Илья Коршунов
Наш эксперт
Написано статей
134
Добавить комментарий