Режим идеального холостого хода в асинхронном двигателе

Iн = Pн/(√3Uн х сosφ), кА

где Pн — номинальная мощность двигателя, кВт, Uн — напряжение в сети, кВ (0,38 кВ). Коэффициент мощности (сosφ) — паспортные значения двигателя.

Рис. 1. Паспорт электрического двигателя.

Если не известен коэффициент мощности двигателя, то номинальный его ток с малой погрешностью определяется по отношению «два ампера на киловатт», т.е. если номинальная мощность двигателя 10 кВт, то потребляемый им из сети ток будет приблизительно равен 20 А.

Для упомянутого на рисунке двигателя это отношение также выполняется (3,4 А ≈ 2 х 1,5). Более верные величины тока при применении данного отношения получаются при мощностях электродвигателей от 3 кВт.

При холостом ходе электродвигателя из сети потребляется маленький ток (ток холостого хода). При увеличении нагрузки увеличивается и ток. С увеличением тока повышается нагрев обмоток. Большая перегрузка приводит к перегреву обмоток двигателя, и возникает опасность выхода из строя электродвигателя.

При пуске из сети электрическим двигателем потребляется пусковой ток Iпуск, который в 3 — 8 раз выше номинального. Характеристика изменения тока представлена на графике (рис. 2, а).

Рис. 2. Характеристика изменения тока, потребляемого электродвигателем из сети (а), и влияние большого тока на колебания напряжения в сети (б)

Подлинную величину пускового тока для электродвигателя определяют зная величину кратности пускового тока — Iпуск/Iном. Кратность пускового тока — техническая характеристика двигателя, ее известна из каталогов. Пусковой ток рассчитывается согласно формуле: I пуск = Iх. х (Iпуск/Iном).

Понимание истинной величины пускового тока необходимо для подбора плавких предохранителей, проверки включения электромагнитных расцепителей во время пуска двигателя, при подборе автоматических выключателей и для высчитывания величины падения напряжения в сети при пуске.

Большой пусковой ток вызывает значительное падение напряжения в сети (рис. 2, б).

Если взять электросопротивление проводов, проложенных от источника до электродвигателя, равным 0,5 Ом, номинальный ток Iн=15 А, а пусковой ток Iп равным пятикратному от номинального, потери напряжения в проводах во время пуска составят 0,5 х 75 + 0,5 х 75 = 75 В.

На клеммах электродвигателя, а также и на клеммах рядом работающих электродвигателей напряжение будет 220 — 75 = 145 В. Это понижение напряжения вызывает торможение работающих электродвигателей, что влечет за собой еще большее повышение тока в сети и выход из строя предохранителей.

В электрических лампах в моменты запуска электродвигателей уменьшается накал (лампы «мигают»). Поэтому при включении электродвигателей стремятся уменьшить пусковые токи .

Для понижения пускового тока используется схема пуска электродвигателя с переключением обмоток статора со звезды на треугольник.

Рис. 3. Схема пуска электрического электродвигателя с переключением обмоток статора со звезды на треугольник.

Имеет принципиальное значение то, что далеко не каждый двигатель возможно включать по этой схеме. Широко распространенные асинхронные двигатели с рабочим напряжением 220/380 В, в том числе и двигатель, показанный на рисунке 1 при включении по этой схеме выйдут из строя.

Для понижения пускового тока электродвигателей энергично употребляют специальные процессорные устройства плавного пуска (софт-стартеры).

Эпилог

При всех своих достоинствах асинхронные машины имеют существенный недостаток, это рывок ротора при подаче напряжения. Такие режимы опасны как для самого двигателя, так и для приводных механизмов. Поскольку во время пуска АД, ток в обмотках двигателя приравнивается к короткому замыканию. А рывок вала разбивает подшипники, шлицы, передаточные устройства. Поэтому пуск АД стараются производить плавным стартом. А именно:

  • Запуск через ЛАТР.
  • Разгон и работа АД, через переключение обмоток двигателя звезда-треугольник.
  • Использование устройств управления, таких как частотный преобразователь.

Источник

Преимущества и недостатки

К преимуществам такого электродвигателя следует отнести:

  • высокий cosφ, приближающийся по величине к 1, что в значительной мере превосходит асинхронные электродвигатели;
  • более высокая механическая прочность за счет особенностей конструкции электродвигателя;
  • зависимость момента вращения от напряжения линейная, а не квадратичная, поэтому колебания электродвигателя пропорционально снижаются;
  • на валу электродвигателя присутствует постоянная скорость, не зависящая от прикладываемой нагрузки;
  • может применяться для уменьшения реактивной составляющей в сети.

Среди недостатков синхронных электродвигателей выделяют:

  • сложную конструкцию;
  • более сложный пуск;
  • необходимость использования вспомогательных устройств и блоков;
  • такие электродвигатели сложнее регулировать по числу оборотов;
  • ремонт и обслуживание также обойдется дороже, чем асинхронные электродвигатели.

Источник

Расчет мощности электродвигателя

Расчет мощности электродвигателя по току можно произвести с помощью нашего онлайн калькулятора:

Полученный результат можно округлить до ближайшего стандартного значения мощности.

Стандартные значения мощностей электродвигателей: 0,25; 0,37; 0,55; 0,75; 1,1; 1,5; 2,2; 3,0; 4,0; 5,5; 7,5; 11; 15; 18,5; 22; 30; 37; 45; 55; 75 кВт и т.д.

Расчет мощности двигателя производится по следующей формуле:

P=√3UIcosφη

  • U — Номинальное напряжение (напряжение на которое подключается электродвигатель);
  • I — Номинальный ток электродвигателя (берется из паспортных данных электродвигателя, а при их отсутствии определяется расчетным путем);
  • cosφ — Коэффициент мощности — отношение активной мощности к полной (принимается от 0,75 до 0,9 в зависимости от мощности электродвигателя);
  • η — Коэффициент полезного действия — отношение электрической мощности потребляемой электродвигателем из сети к механической мощности на валу двигателя (принимается от 0,7 до 0,85 в зависимости от мощности электродвигателя);

Как снизить вред от пускового тока?

Если изменить схему питания двигателя невозможно (например, сосед по даче каждые пол часа запускает токарный станок, а никакие “методы воздействия” не воздействуют), то можно применить различные методы минимизации вреда от пусковых токов. Например:

  1. На важные потребители или на весь дом установить инверторный ИБП (UPS), который будет держать напряжение в норме при любом раскладе. Самый дорогой, но действенный способ.
  2. Поставить стабилизатор напряжения. Но учтите, что не все стабилизаторы одинаково полезны. Иногда они могут не справляться, а иногда – даже усугублять ситуацию. Подробнее – по приведенной ссылке.
  3. Если питание – однофазное, то можно попробовать переключиться с “плохой” фазы на “хорошую”. Иногда этот способ так же эффективен, как использование телепорта вместо автобуса “Таганрог-Москва”.

Но напоминаю, что мы тут занимаемся не устранением последствий, а предотвращением проблем, поэтому погнали дальше.

Режим холостого хода трансформатора

Трансформатор, как таковой, предназначен для повышения или понижения напряжения, если это необходимо, а также он может служить для разделения электрических цепей. Он имеет, как минимум, две обмотки. Причем, одна из них – первичная, а другая (или несколько) – вторичные. В повышающем трансформаторе количество витков во вторичной обмотке больше, чем в первичной, в понижающем – меньше.В разделительных трансформаторах – число витков одинаково в обоих обмотках.

Каждый трансформатор через определенный промежуток времени проходит проверку, или, говоря техническим языком – поверку. Главные испытания, которые проходит любой трансформатор, это:

  • Проверка работы в режиме холостого хода
  • Проверка под нагрузкой (на различных режимах)
  • Проверка работы в режиме короткого замыкания.

Обычный двухобмоточный трансформатор на схемах обозначается следующими символами:

В зависимости от того, разделительный это трансформатор(рис 1), повышающий(рис 2) или понижающий(рис 3).

Трехфазный асинхронный двигатель с фазным ротором

До широкого распространения частотных преобразователей асинхронные двигатели средней и большой мощности делали с фазным ротором. Трехфазные асинхронные двигатели с фазным ротором (АДФР) обычно применяли в устройствах с тяжелыми условиями пуска, например в качестве крановых двигателей переменного тока, или же для привода устройств, требующих плавного регулирования частоты вращения.

Конструкция АДФР

Фазный ротор

Конструктивно фазный ротор представляет из себя трехфазную обмотку (аналогичную обмотки статора) уложенную в пазы сердечника фазного ротора. Концы фаз такой обмотки ротора обычно соединяются в «звезду», а начала подключают к контактным кольцам, изолированным друг от друга и от вала. Через щетки к контактным кольцам обычно присоединяется трехфазный пусковой или регулировочный реостат. Асинхронные двигатели с фазным ротором имеют более сложную конструкцию, чем у двигателей с короткозамкнутым ротором, однако обладают лучшими пусковыми и регулировочными свойствами.

Статор АДФР

Статор асинхронного двигателя с фазным ротором по конструкции не отличается от статора асинхронного двигателя с короткозамкнутым ротором.

Обозначение выводов вторичных обмоток трехфазного АДФР

Схема соединения обмоток, наименование фазы и вывода Обозначение вывода
Начало Конец
Открытая схема (число выводов 6)
первая фаза K1 K2
вторая фаза L1 L2
третья фаза M1 M2
Соединение в звезду (число выводов 3 или 4)
первая фаза K
вторая фаза L
третья фаза M
точка звезды (нулевая точка) Q
Соединение в треугольник (число выводов 3)
первый вывод K
второй вывод L
третий вывод M
Схема соединения обмоток, наименование фазы и вывода Обозначение вывода
Соединение звездой (число выводов 3 или 4)
первая фаза Р1
вторая фаза Р2
третья фаза Р3
нулевая точка
Соединение треугольником (число выводов 3)
первый вывод Р1
второй вывод Р2
третий вывод Р3

Пуск АДФР

Пуск двигателей с фазным ротором производится с помощью пускового реостата в цепи ротора.

Применяются проволочные и жидкостные реостаты.

Металлические реостаты являются ступенчатыми, и переключение с одной ступени на другую осуществляется либо вручную с помощью рукоятки контроллера, существенным элементом которого является вал с укрепленными на нем контактами, либо же автоматически с помощью контакторов или контроллера с электрическим приводом.

Жидкостный реостат представляет собой сосуд с электролитом, в котором опущены электроды. Сопротивление реостата регулируется путем изменения глубины погружения электродов .

Для повышения КПД и снижения износа щеток некоторые АДФР содержат специальное устройство (короткозамкнутый механизм), которое после запуска поднимает щетки и замыкает кольца.

При реостатном пуске достигаются благоприятные пусковые характеристики, так как высокие значения моментов достигаются при невысоких значениях пусковых токов. В настоящее время АДФР заменяются комбинацией асинхронного электродвигателя с короткозамкнутым ротором и частотным преобразователем.

Источник

Теперь я расскажу о том, как подключаются асинхронные движки.

Статорная обмотка практически любого такого устройства имеет шесть выводов (из них три – начала и три – концы). В зависимости от того, какова питающая сеть мотора, эти выводы соединяют либо в «звезду», либо в «треугольник». С этой целью корпус каждого мотора имеет коробку, в которой выведены начальные и конечные провода обмоток (они обозначаются, соответственно, С1, С2, С3 и С4, С5, С6).

Сперва разберем тип соединения в звезду.

Подключение асинхронных электродвигателей

Так называют метод соединения обмоток, при котором все три обмотки имеют одну общую точку (нейтраль). Линейное напряжение такого соединения выше фазного в 1,73 раза. Положительным качеством этого вида соединений считают малые токи пуска, хотя мощностные потери при этом довольно значительны.

История

Происхождение

Происхождение легендарного оружия до сих пор неизвестно. Предполагается, что Вассальное Оружие  тесно связано с Легендарным Оружием и происхождением мира.

Их цель — защитить их мир от Волн Бедствий , после чего пользователям разрешается уйти в свой мир.

Легенды

Ответ на волны, появляется набор уникального оружия, обычно их четыре единицы. Ритуал призыва также отберет людей из других миров, которые будут носить это оружие; в случае Наофуми, он обнаружил книгу «Сказание о Четырех Священных Орудиях» во время просмотра библиотеки. Как только Легендарный Герой скончался, его оружие исчезнет в ожидании призыва нового героя. Оружие может быть возобновлено, если волны будуть побеждены, либо набор оружия будет уничтожен. Говорят, с каждым пропавшим оружием волны становятся сильнее.

Легендарное оружие специализируется на защите мира, в котором оно живет. Они совершенствуются, появляясь в своих соответствующих мирах, каждый из которых имеет свои показатели мощности.

Виды электродвигателей

Наибольшее распространение имеет трехфазный асинхронный электродвигатель. Электродвигатели постоянного тока и синхронные применяются редко.

Большинство электрифицированных машин нуждаются в приводе мощностью от 0,1 до 10 кВт, значительно меньшая часть — в приводе мощностью в несколько десятков кВт. Как правило, для привода рабочих машин используются короткозамкнутые трехфазные электродвигатели. По сравнению с фазным такой электродвигатель имеет более простую конструкцию, меньшую стоимость, большую надежность в эксплуатации и простоту в обслуживании, несколько более высокие эксплутационные показатели (коэффициент мощности и коэффициент полезного действия), а при автоматическом управлении требует простой аппаратуры. Недостаток короткозамкнутых электродвигателей — относительно большой пусковой ток. При соизмеримости мощностей трансформаторной подстанции и электродвигателя его пуск сопровождается заметным снижением напряжения сети, что усложняет как пуск самого двигателя, так и работу соседних токоприемников.

Наряду с трехфазными асинхронными короткозамкнутыми электродвигателями основного исполнения применяются также отдельные модификации этих двигателей: с повышенным скольжением, многоскоростные, с фазным ротором, с массивным ротором и т. д. Электродвигатели с фазным ротором применяют и в тех случаях, когда мощность питающей сети недостаточна для пуска двигателя с короткозамкнутым ротором.

Механические характеристики асинхронных электродвигателей с короткозамкнутым ротором в значительной мере зависят от формы и размеров пазов ротора, а также от способа выполнения роторной обмотки. По этим признакам

Рис. 1. Кривые моментов M = f(S) асинхронных электродвигателей

различают электродвигатели с нормальным ротором (нормальная беличья клетка), с глубоким пазом и с двумя клетками на роторе. Конструкция ротора короткозамкнутых асинхронных электродвигателей общего назначения мощностью свыше 500 Вт предопределяет явление вытеснения тока в обмотке, эквивалентно увеличению ее активного сопротивления. Поэтому, а также вследствие насыщения магнитных путей потоков рассеивания такие электродвигатели (в первую очередь обмотки ротора) обладают переменными параметрами и аналитические выражения их механических характеристик усложняются. Увеличение активного сопротивления ротора в период пуска вызывает увеличение начального пускового момента при некотором снижении силы начального пускового тока (рис. 1).

Типы синхронных двигателей

В целом синхронные двигатели подразделяются на несколько категорий, в зависимости от их конструктивных особенностей.

Так, для получения потока возбуждения используют:

  • обмотку на роторе – для обеспечения электромагнитного взаимодействия на обмотку подается питание от стороннего источника;
  • магнитный ротор – вспомогательное магнитное поле ротора создается постоянными магнитами, установленными на нем;
  • реактивный ротор – форма магнитопровода индуктора выполнена таким образом, что силовые линии якоря преломляются до получения синхронного вращения.

В зависимости от конструкции ротора, выделяют явнополюсный и неявнополюсный синхронный двигатель.

По режиму работы могут использоваться в качестве электродвигателя, генератора или синхронного компенсатора.

Принцип работы

Функционирование асинхронного двигателя осуществляется на основе свойства трёхфазного тока, способного создавать в обмотках статора вращающее магнитное поле. В рассматриваемых электродвигателях синхронная частота вращения электромагнитного поля связана прямо пропорциональной зависимостью с собственной частотой переменного тока.

Существует обратно пропорциональная зависимость частоты вращения от количества пар полюсов в обмотках статора. Учитывая то, что сдвиг фаз составляет 60º, зависимость частоты вращения ротора (в об/мин.) можно выразить формулой:

В результате действия магнитной индукции на сердечник ротора, в нём возникнет ЭДС, которая, в свою очередь, вызывает появление электрического тока в замкнутом проводнике. Возникнет сила Ампера, под действием которой замкнутый контур начнёт вращение вдогонку за магнитным полем. В номинальном режиме работы частота вращения ротора немного отстаёт от скорости вращения создаваемого в статоре магнитного поля. При совпадении частот происходит прекращение магнитного потока, ток исчезает в обмотках ротора, вследствие чего прекращается действие силы. Как только скорость вращения вала отстанет, переменными токами магнитных полей, возобновляется действие амперовой силы.

Разницу частот вращения магнитных полей называют частотой скольжения: ns=n1–n2, а относительную величину s, характеризующую отставание, называют скольжением.

s = 100% * ( ns/ n1) = 100% * (n1 — n2) / n1 , где ns – частота скольжения; n1, n2 – частоты вращений статорных и роторных магнитных полей соответственно.

С целью уменьшения гармоник ЭДС и сглаживания пульсаций момента силы, стержни короткозамкнутых витков немного скашивают. Взгляните ещё раз на рис

2 и обратите внимание на расположение стержней, выполняющих роль обмоток ротора, относительно оси вращения

Скольжение зависит от того, какую механическую нагрузку приложено к валу двигателя. В асинхронных электромоторах изменение параметров скольжения происходит в диапазоне от 0 до 1. Причём в режиме холостого хода набравший обороты ротор почти не испытывает активного сопротивления. S приближается к нулю.

Увеличение нагрузки способствует увеличению скольжения, которое может достигнуть единицы, в момент остановки двигателя из-за перегрузки. Такое состояние равносильно режиму короткого замыкания и может вывести устройство из строя.

Относительная величина отставания соответствующая номинальной нагрузке электрической машины называется номинальным скольжением. Для маломощных электромоторов и двигателей средней мощности этот показатель изменяется в небольших пределах – от 8% до 2%. При неподвижности ротора электродвигателя скольжение стремится к 0, а при работе на холостом ходу оно приближается к 100%.

Во время запуска электромотора его обмотки испытывают нагрузку, что приводит к резкому увеличению пусковых токов. При достижении номинальных мощностей электрические двигатели с короткозамкнутыми витками самостоятельно восстанавливают номинальную частоту ротора.

Обратите внимание на кривую крутящего момента скольжения, изображённую на рис. 3

При увеличении крутящего момента коэффициент s изменяется от 1 до 0 (см. отрезок «моторная область»). Возрастает также скорость вращения вала. Если скорость вращения вала превысит номинальную частоту, то крутящий момент станет отрицательным, а двигатель перейдёт в режим генерации (отрезок «генерирующая область»). В таком режиме ротор будет испытывать магнитное сопротивление, что приведёт к торможению мотора. Колебательный процесс будет повторяться, пока не стабилизируется крутящий момент, а скольжение не приблизится к номинальному значению.

Конструкция

Конструкция асинхронного двигателя, пожалуй, самая простая среди его аналогов. Он состоит из ротора и статора. Зачастую на статоре расположена трёхфазная обмотка, исключение составляют двигатели, предназначенные для работы в однофазной сети с двухфазной обмоткой или с рабочей и пусковой обмоткой. Статор состоит из металлического корпуса и сердечника с обмотками (собственно их называют обмоткой статора).

Так как двигатель питается переменным током, возникает проблема, связанная с потерями на блуждающие токи (т.н. токи Фуко), для этого сердечник статора набирают из тонких пластин. Стальные пластины для предотвращения контакта друг с другом изолируются окалиной, скрепляются лаком. Ток, протекающий в обмотках статора, называют током статора.

Корпус статора закрывается с двух сторон подшипниковыми щитами, в них, соответственно, устанавливаются подшипники скольжения или качения, в зависимости от мощности и размеров машины. Подшипники закрываются крышками, это нужно для их смазки, обычно используют пластичную смазку, как литол, солидол и подобные.

Реже, в больших и мощных электрических машинах могут использоваться опорные подшипники скольжения с циркуляционной системой смазки (жидкостная смазка). В них маслонасос закачивает масло, в рабочем режиме ротор таких машин скользит по тонкой масляной плёнке, подобно тому, как это происходит во вкладышах на ДВС.

По конструкции корпуса и типу крепления различают двигатели на лампах или с фланцевым креплением, также бывают с комбинированным типом крепления — с лапами и фланцем.

В зависимости от типа двигателя вал из него может выходить как с одной, так и с обеих сторон. К нему присоединяется исполнительный механизм, для этого конец выполняется конической или цилиндрической формы или с проточкой для установки шпонки и соединения с исполнительным механизмом.

В большинстве электродвигателей используется принудительное воздушное охлаждения. Для этого на корпусе продольно располагаются рёбра, а на другом конце вала устанавливается крыльчатка вентилятора охлаждения. Во время работы двигателя она вращается и прогоняет воздух вдоль рёбер, забирая тепло от статора.

Проверка работы холостого хода производится при подключении в сеть первичной обмотки.

Вторичная, при этом, на нагрузку не включается. Имеем напряжение U1на первичной обмотке, и напряжение U2 на вторичной. Ток I1будет иметь некоторое значение, в отличие отI2 который будет равен нулю.

Схема подключения для данного опыта представлена на рис. 4

Для лучшего понимания процесса перечертим трансформатор (см. рис.5) в ином виде:

Первичная обмотка с числом витков W1 подключена в сеть стандартного напряжения U1. Если обмотка имеет сопротивление не равное бесконечности, то по ней потечет ток I1. Из курса физики знаем, что всякая обмотка, через которую протекает ток, создает магнитное поле. В данном случае переменное поле, то есть интенсивность его меняется во времени и направление поля тоже меняется во времени. Магнитный поток Ф зависит от индуктивности катушки Lи силы тока в ней, в данном случае I1. Формула: Ф = L* I1. Сердечник трансформатора, на котором намотаны катушки, обычно делаются из тонких стальных листов, для уменьшения потерь этого магнитного потока. Однако потери все равно есть, из-за, так называемого, рассеивания. Данный магнитный поток будет одинаковым, как в режиме холостого хода, так и в режиме нагрузки, то есть, когда на вторую обмотку подключен потребитель и по ней потечет ток.

Вышеназванный переменный магнитный поток Ф будет создавать электродвижущую силу как во вторичной обмотке e2, так и в первичнойe1. Во вторичной обмотке нагрузки нет (потребитель не подключен), то нет и тока I2. То есть он равен нулю. А напряжение U2 есть, какое оно мы рассмотрим позже.

В первичной обмотке цепь замкнута и ЕДС e1 создает ток противодействующий основному току I1 и собственный магнитный поток, который противодействует потоку Ф. В связи с этим, ток холостого хода никогда не бывает большим. Для крупных трансформаторов это в пределах 5%, максимум 10% от номинального. Для трансформаторов малой мощности вне ответственных изделиях, например зарядных устройствах телефонов, этот ток может доходить до 30 и более процентов от номинального.

Напряжение U1 есть сумма от падений напряжений на активном сопротивлении UА1, а так же от создания магнитного потока Ф, которое обозначим UL1 и падения напряжения от создания потока рассеивания ULS1.

Значит формула, согласно закону Кирхгофа будет иметь вид: U1=UА1+UL1+ULS1. В свою очередь UА1=I1*R1. Где R1 – активное сопротивление на первичной обмотке. Витки обмотки, как правило, медные, по этой причине сопротивление R1 имеет очень малое значение.

Если трансформатор собран для ответственной работы, то и поток рассеивания так же будет мал. ULS1=XLS*I1=2πfLs1* I1, где f–промышленная частота 50 герц, а Ls1 – поток рассеивания. И тем и другим слагаемым можно пренебречь по сравнению с потерями на перемагничивание стали сердечника трансформатора. В этом случае мы допускаем, что все напряжение тратится на создание потока Ф, а он зависит от тока в проводнике, в данном случае I1 и индуктивности L, которая зависит от количества витков в обмотке. Но так как магнитный поток в первичной и вторичной обмотке одинаков, то напряжение U1 и U2 зависят только от количества витков в первичной и вторичной обмотке. Коэффициент зависимости этих напряжений и называется коэффициентом трансформации К = U1/U2= e1/e2 = W1/W2.

Напомним, что противодействие основному потоку возникает только при его изменении, то сеть при переменном потоке (иными словами при переменном токе в цепи). Если обмотку трансформатора включить в цепь постоянного тока, то она наверняка перегорит, поскольку противодействие будет составлять только активное сопротивление, а оно очень мало.

Если нам известен ток первичной обмотки I1, напряжение на первичной обмотке U1, напряжение на вторичной обмотке U2 и потребляемая трансформатором мощность S, то мы можем вычислить следующие параметры:

  • Коэффициент трансформации К = U1/U2
  • Процентное значение тока холостого хода: i = (Ixx/IH)*100, где Ixx – ток холостого ходав данном случае I1, IH – ток при номинальной нагрузке.
  • Активное сопротивление первичной обмотки R1 = PА/Ixx
  • Полное сопротивление первичной обмотки Z1 = U1/Ixx
  • Индуктивное сопротивление первичной обмотки X1 = (Z21 -R21)
  • Коэффициент мощности трансформатора cosφ = S/I12R1

Поскольку пункт 2 невозможно вычислить без проверки трансформатора при нагрузке, то и последовательность проверок, как правило, следующее: под нагрузкой, при коротком замыкании и при режиме холостого хода.

Пишите комментарии, дополнения к статье, может я что-то пропустил. Загляните на карту сайта Электронщик , буду рад если вы найдете на моем сайте еще что-нибудь полезное.

Источник

Похожие:

Инструкция «О соблюдении правил дорожного движения»Основными причинами дорожно-транспортных происшествий по вине пешеходов являются 4 упражнения по предупреждению и ликвидации газонефтеводопроявлении (гнвп)Основными причинами газонефтеводопроявлений, как следует из опыта строительства скважин являются
Урок тема: Электробезопасность на производствеОбучающая: Познакомить учащихся с основными причинами поражения электрическим током. Действием электрического тока на организм человека…. 1. угроза возникновения пожара дома, на дачеВ связи с несоблюдением гражданами правил пожарной безопасности при использовании электроприборов, печного или газового оборудования…
Электронный перфораторЧастота холостого хода (об/мин) 0 – 1200 Количество ударов в минуту 0 – 4200 Полная длина 333 мм Масса 3 кг Памятка-инструкция по пожарной безопасности для жителей проживающих…Квартиросъемщик (собственник жилья) проживающий в жилом доме должен знать, что основными причинами возникновения пожаров в жилых…
Анализ исполнения консолидированного бюджета Башмаковского района за 2013 годВопросы роста налоговых платежей в бюджет, вывод заработной платы из «тени», сохранения и увеличения численности, занятых в экономике… Инструкция по эксплуатации технические характеристикиГлубина распила 7 45 мм Ширина распила 7 – 35 мм Частота холостого хода (об/мин) 7800
Шуруповерт инструкция по эксплуатацииМодель 6822 Возможности Саморезы 6 мм Шурупы по гипсокартону 5 мм Частота холостого хода, об/мин 0 – 4000 Полная длина 258 мм Масса… Инструкция по эксплуатации технические характеристикиЧастота холостого хода (об/мин) 0 – 900 Количество ударов в минуту 0 – 4000 Полная длина 287 мм Масса 1кг
Дрель инструкция по эксплуатацииМодель 6407/6408 Возможности Металл 10 мм Дерево 25 мм Частота холостого хода, об/мин 0-2500 Полная длина 261 мм Масса: 4 кг Инструкция по эксплуатации технические характеристикиЧастота холостого хода (об/мин) 120 240 Количество ударов в минуту 1100 2150 Полная длина 610 мм Масса 10 кг
Инструкция по эксплуатации технические характеристикиМодель 9741 Размер щетки (диаметр Х ширина) 100 Х 120 мм Частота холостого хода (об/мин) 3500 Размеры (длина Х ширина Х высота) 310… Шуруповерт для монтажа гипсокартона инструкция по эксплуатацииМодель 6823 6824 6825 Возможности Саморезы 6 мм 6 мм Шурупы по гипсокартону 6 мм 5 мм 4 мм Частота холостого хода, об/мин 0-2500…
Реферат Дипломный проект 94 стр., 14 рис., 12 табл., 20 источниковВ проекте разработан и рассчитан сухой трансформатор с литой изоляцией. Был произведен расчет потерь холостого хода и короткого замыкания…. Лекция «Рахит. Спазмофилия. Гипервитаминоз Д»Этиология. Причинами и предрасполагающими факторами к возникновению рахита являются

Руководство, инструкция по применению

Инструкция, руководство по применению

Асинхронные двигатели с фазным ротором

Основной способ управления АД с фазным ротором — изменение величины скольжения между статором и ротором.

Регулирование с помощью напряжения

Через специальные автотрансформаторы ЛАТР, путем изменения напряжения на обмотках двигателя, производят регулировку оборотов вала.

Данный способ так же подходит и к АД с короткозамкнутым ротором. Таким способ можно регулировать в пределах от минимума до номинальных параметров двигателя.

Установка активного сопротивления в цепи ротора

Переменное реостатное сопротивление или набор сопротивлений в цепи ротора воздействует на ток и поле ротора. Изменяя таким образом величину скольжения и количество оборотов двигателя.

Чем больше сопротивление, тем меньше ток, тем больше величина скольжения АД и меньше скорость.

Достоинства такого регулирования.

  1. Большой диапазон регулирования оборотами электрической машины.
  2. Мягкая выходная характеристика мотора.

Недостатки такого способа.

  1. Уменьшение КПД двигателя.
  2. Ухудшение рабочих характеристик механизма.

Принцип работы

В любом электродвигателе ротор приводится во вращение в результате взаимодействия магнитных полей ротора и статора и работы силы Ампера. Для создания магнитного поля используются либо постоянные магниты, либо электромагниты — обмотки статора и ротора. Одну из обмоток (ротора или статора) называют обмоткой возбуждения, вторую обмотку называют обмоткой якоря. Асинхронный двигатель отличается от других типов электромашин тем, что у него нет выраженной обмотки возбуждения, отсюда возникает вопрос «если нет обмотки возбуждения, то как создаётся магнитное поле?», если опустить некоторые особенности, то ответ на этот вопрос достаточно простой — асинхронный двигатель почти как трансформатор.

Напряжение от сети подключают к обмоткам статора. В них протекает электрический ток, в результате чего возникает магнитное поле статора. Так как сеть трёхфазная, фазы токов и напряжений каждой из фаз сдвинуты друг относительно друга на 120˚. Сила тока изменяется по синусоидальному закону и ток протекает то в одной, то в другой обмотке. Из-за этого магнитное поле получается вращающимся, что наглядно иллюстрирует ЭТО ВИДЕО

Магнитное поле статора индуцирует ЭДС в обмотках ротора (хоть короткозамкнутого, хоть фазного, о конструкции и видах мы поговорим дальше). Так как обмотки ротора закорочены или подключены к сопротивлениям — в них начинает протекать электрический ток, из-за которого возникает еще одно магнитное поле, которое, взаимодействуя с полем статора, приводит во вращение ротор.

Скорость вращения поля статора называют «синхронной», а скорость вращения ротора «асинхронной», из-за такой особенности этот тип электромашин и получил своё название. Ротор всегда немного отстает от поля статора, разность этих скоростей называют «скольжением». Скорость вращения (оборотов в минуту) поля статора зависит от частоты тока в питающей сети и числа его полюсов, если проще — от количества катушек в обмотке, и вычисляется по формуле:

где f – частота напряжения питающей сети, р – число пар полюсов, 60 – секунд в минуте

Синхронная скорость двигателя с одной парой полюсов равна: 60*50/1=3000 оборотов в минуту. Но асинхронная скорость или скорость вращения ротора будет несколько ниже, как отмечалось ранее. Обычно она находится в районе 2700-2950 об/мин, а скольжение лежит в пределах 2-8% (зависит от типа электродвигателя, его мощности и нагрузки на валу). Скольжение измеряется в относительных величинах или в процентах, и рассчитывается по формуле:

где n1 — синхронная скорость вращения, n2 — скорость вращения ротора.

Расчет КПД электродвигателя

Онлайн расчет КПД (коэффициента полезного действия) электродвигателя

Расчет коэффициента полезного действия электродвигателя производится по следующей формуле:

η=P/√3UIcosφ

  • P — Номинальная мощность электродвигателя (берется из паспортных данных электродвигателялибо определяется рассчетным путем);
  • U — Номинальное напряжение (напряжение на которое подключается электродвигатель);
  • I — Номинальный ток электродвигателя (берется из паспортных данных электродвигателя, а при их отсутствии определяется расчетным путем);
  • cosφ — Коэффициент мощности — отношение активной мощности к полной (принимается от 0,75 до 0,9 в зависимости от мощности электродвигателя);

Не нашли на сайте статьи на интересующую Вас тему касающуюся электрики? Напишите нам здесь. Мы обязательно Вам ответим.

Оцените статью
Рейтинг автора
5
Материал подготовил
Илья Коршунов
Наш эксперт
Написано статей
134
Добавить комментарий