Сила тока короткого замыкания

Причины и устранение коротких замыканий в кабелях и соединениях

КЗ возникает по следующим причинам:

  • физический износ изоляции;
  • повреждение изоляции грызунами;
  • значительный перегрев изоляции кабелей;
  • прямое соединение фазного и нулевого проводов.

Физический износ изоляции

Скрытая проводка это удобно и экономно!

Изоляционные оболочки для проводов изготавливают в основном из поливинилхлорида. Виниловый материал может сохранять свои эксплуатационные качества на протяжении не одного десятка лет. Но агрессивная среда может значительно укоротить срок службы защитного слоя проводов. Этому же фактору подвержены все виды изоляционных лент.

Устранение короткого замыкания вследствие физического износа кабелей и проводов заключается в постоянном контроле состояния проводников и своевременной заменой на новую электротехническую продукцию.

Важно! Когда пропадает звук в правом или левом канале наушников или колонок, следует проверить состояние токоподводящих проводов. Плохая пайка, низкокачественная изоляция могут вызвать КЗ, и звуковоспроизводящие приборы выходят из строя

Это часто встречается в дешёвой китайской продукции, где используются тонкие быстроизнашиваемые проводки.

Повреждение изоляции грызунами

Мыши и крысы нередко становятся виновниками короткого замыкания. Кабели, проложенные в подвальных помещениях и под землёй, зачастую подвергаются риску повреждения грызунами. Прогрызая защитную оболочку силовых проводников, мелкие животные провоцируют замыкание оголённых проводов между собой и на землю.

Устранить такие негативные явления прокладки подземных коммуникаций можно, используя бронировку поверхностного слоя изоляции кабельной продукции. Бронированные кабели обладают повышенной защитой от внешнего физического воздействия, в том числе от грызунов. При этом необходимо сделать санацию в местах обитания мелких вредителей.

Обратите внимание! В гаражах нередко появляются грызуны. Питаясь запасами продовольствия в подвалах боксов, мыши и крысы не брезгуют изоляцией проводки автомобиля

Они могут повредить провода, идущие от аккумулятора, стартера или генератора. В результате происходит замыкание силовых проводов, что может садить АКБ и при движении привести к пожару в машине.

Значительный перегрев изоляции кабелей

В результате большого нагрева изоляция разрушается, что ещё хуже – она может загореться. Перегрев происходит в результате резкого возрастания количества ампер силы тока. Обычно причиной тому являются скачки напряжения в розетках централизованной электросети.

Какой делать защиту от резкого возрастания напряжения и силы тока, решает сам хозяин жилища. Иногда лучше обращаться к специалистам, чтобы они предложили наилучший вариант исключения перегрева кабелей и проводов. Эффективным средством предотвращения негативного фактора является установка автоматических предохранительных блоков.

Электрическую сеть дома или квартиры разделяют на отдельные ветви, которые запитывают от определённого автомата. Назначение каждого прибора маркируют.

Для того чтобы избежать перегрева материнской платы ПК, компьютер подключают к розетке через стабилизатор напряжения. Также подсоединяют стабилизаторы к другим электрическим и электронным приборам. В некоторых случаях устанавливают единый стабилизатор на входе сети электроснабжения.

Прямое соединение фазного и нулевого проводов

В результате прямого контакта между фазным и нулевым проводами мгновенно происходит короткое замыкание. Самое опасное – это то, что может возникнуть электрическая дуга, которая может привести к пожару и произвести значительные разрушения окружающего пространства.


Следствие замыкания в электрощитовой

10. Пример расчета токов КЗ в сети напряжением 0,4 кВ

Категория: И.Л. Небрат «Расчеты токов короткого замыкания в сетях 0,4 кВ»

Расчет токов КЗ – трехфазных, двухфазных, однофазных в сети 0,4 кВ схемы, приведенной на рис. 7

Рис.8 Расчетная схема к примеру

         Необходимо рассчитать токи КЗ в сети 0,4 кВ собственных нужд электростанции. Расчет выполняется для проверки отключающей способности автоматических выключателей, проверки кабельных линий на термическую стойкость, а также для выбора уставок токовых катушек автоматических выключателей и проверки их чувствительности.

       С этой целью выполняются расчеты металлических и дуговых КЗ трехфазных, двухфазных и однофазных.

   Расчетная схема представлена на рис.7

       Расчет выполняется в именованных единицах, сопротивления расчетной схемы приводятся к напряжению 0,4 кВ и выражаются в миллиомах. Параметры элементов расчетной схемы приводятся в таблицах Приложения 1

       Расчеты выполняются в соответствии с методикой рекомендованной ГОСТ 28249-93 на расчеты токов КЗ в сетях напряжением до 1 кВ.

       Короткие замыкания рассчитываются на шинах 0,4 кВ РУ (точка К1) и на вторичной силовой сборке за кабелем КЛ1 (точка К2).

       В данном примере расчеты дуговых КЗ выполняются с использованием снижающего коэффициента КС , поэтому переходные сопротивления контактов, контактных соединений кабелей и шинопроводов в расчетных выражениях для определения суммарного активного сопротивления R не учитываются, эти сопротивления учтены при построении характеристик зависимости коэффициента Кс от полного суммарного сопротивления до места К3, Кс = ∫(Z), полученных экспериментальным путем. Характеристики Кс = ∫(Z) приведены на рис. 6.

Ударный ток

Ударный ток представляет серьезную опасность для трансформатора большой мощности: электромагнитные силы в обмотках могут сдвинуть витки, смять изоляцию и вызвать в конечном итоге повреждение обмоток. Заметим, что сила взаимодействия между двумя витками, которые обтекаются общим током, пропорциональна квадрату этого тока. При коротких замыканиях, когда токи возрастают в десятки раз, механические силы в обмотках могут увеличиться в тысячу раз и более. Поэтому катушки и витки обмоток прочно укрепляют с тем, чтобы не возникло сколько-нибудь заметных деформаций их при коротком замыкании.

Ударный ток зависит от момента приложения напряжения после окончания импульса тока и от амплитуды и скорости нарастания этого импульса напряжения. Так, например, при приложении через 1 мс после импульса тока напряжения, равного примерно 0 5 значения максимально допустимого повторяющегося импульсного напряжения и нарастающего со скоростью около 0 5 В / мкс, ударный ток уменьшается приблизительно до 0 6 — 0 7 значения тока, полученного без последующего приложения напряжения.

Ударный ток, соответствующий времени 0 01 с.

Ударный ток iy, равный наибольшему значению тока, который появляется в первый момент короткого замыкания. Этот ток используется при расчетах электрической аппаратуры на динамическую устойчивость.

Ударные токи определяются достаточно сложно.

Ударный ток / м есть максимальное мгновенное значение тока короткого замыкания.

Токи в фазах при трехфазном коротком замыкании цепи, питающейся от источника неограниченной мощности.

Ударные токи в фазах не только различны по величине, но не совпадают и по времени.

Ударный ток представляет серьеЗ ную опасность для трансформатора: электромагнитные силы в обмотках могут сдвинуть витки, смять изоляцию и вызвать в конечном итоге ее пробой. Поэтому катушки и витки обмоток должны быть прочно укреплены с тем, чтобы не возникало сколько-нибудь заметных деформаций их в процессе короткого замыкания. Поэтому трансформаторы дополнительно рассчитываются на теплостойкость в аварийных режимах.

Ударный ток представляет серьезную опасность для трансформатора большой мощности: электромагнитные силы в обмотках могут сдвинуть витки, смять изоляцию и вызвать в конечном итоге ее пробой. Поэтому катушки и витки обмоток прочно укрепляются, с тем чтобы не возникло сколько-нибудь заметных деформаций их при коротком замыкании.

Ударный ток КЗ от источника питания определяется по (2.170) с учетом Га Хц / игц. Допускается принимать значение ударного коэффициента куя 1 3 при КЗ в распределительном устройстве РУ НН КТП и в местах подключения кабелей и шино-проводов к нему и кул — 1 для всех остальных случаев.

Распределение апериодических токов.

Ударный ток КЗ определяется суммированием амплитуды периодической составляющей с апериодической в первом полупериоде после момента КЗ.

Ударный ток КЗ в месте установки разъединителя не должен превышать допустимую амплитуду ударного тока КЗ разъединителя.

Ударный ток двухфазного короткого замыкания не вычисляют, так как он для всех значений Z меньше, чем при трехфазном коротком замыкании.

Ударный коэффициент

Статистические характеристики числа плановых коммутаций ВЛ за год.| Статистические характеристики.| Ожидаемое число плановых и аварийных коммутаций, коротких замыканий за год.

Из-за большого числа влияющих факторов ударный коэффициент меняется от коммутации к коммутации даже в конкретной электрической сети и потому является случайной величиной.

Ударные коэффициенты контура R — L9 — Сэ при включении э. д. с. em — Emcos ( ( ut — — tye в зависимости от частоты собственных колебаний и декремента а.

На рис. 13.3 приведены зависимости ударных коэффициентов / СудЛ ( k 1, 2, 3) от частоты Р и параметра а. Если Р 3 0ш, то наибольшие перенапряжения возникают при k — l; если 1 6 to р 3 0в, то-при k 2, а при дальнейшем уменьшении собственной частоты Р наибольшие перенапряжения возникают на третьем ( k 3) и последующих полупериодах колебаний.

Крпные тока при включении на синусоидальное напряжение.

На рис. 4.6 приведена зависимость ударного коэффициента от отношения активного сопротивления R к индуктивному A — j) L включаемой цепи.

Зависимости коэффициентов а0 и кт от отношения U / U in на шинах, от которых отключается трансформатор.| Усредненные значения емкостей ошиновки и силовых трансформаторов.

Среднее значение и среднеквадратичное отклонение ударного коэффициента при успешном ТАПВ приведены на рис. 38.27, откуда видно, что среднее значение ударного коэффициента меняется мало, оставаясь в пределах 1 61 — 1 69, но достаточно сильно изменяется среднеквадратичное значение.

В однолинейной колебательной цепи без потерь ударный коэффициент равен двум. В реальных условиях величина ударного коэффициента зависит от многих факторов, но для линий электропередачи ударный коэффициент всегда больше единицы.

Рассмотрим влияние магнитного шунта трансформатора на ударный коэффициент.

Величина 1 ос, так называемый ударный коэффициент, является переменной, выбираемой у разных авторов различно.

Рассмотрим влияние угла включения ср на ударный коэффициент при разных собственных частотах схемы.

Различные коммутации, характеризующиеся разными значениями ударных коэффициентов, могут заканчиваться одним и тем же установившимся режимом.

Как влияет масса конструкции на величину ударного коэффициента.

Если при коротком замыкании вблизи крупных генераторов ударный коэффициент очень близок к 2, то по мере увеличения удаленности короткого замыкания он, как правило, падает, причем тем интенсивнее, чем больше доля воздушных и особенно кабельных линий.

Электротехнические средства защиты

Защитить электрическую цепь от КЗ помогают различные типы предохранителей. Наиболее простыми считаются плавкие предохранители одноразового действия, различающиеся по внешнему виду. Они выступают в качестве наиболее слабого звена и в случае аварии срабатывают, разрывая цепь и защищая вверенный участок. Жертвуя собой, эти компоненты предотвращают разрушение и выход из строя других, более важных приборов от действия высоких температур, образовавшихся из-за резкого увеличения силы тока.

Плавкие предохранители для защиты от короткого замыкания выпускаются в широком ассортименте и могут работать с напряжением 600-35000В и силой тока от нескольких миллиампер до 1 тысячи ампер. Конструкция у всех одинаковая, состоит из плавкой вставки, контакта, дугогасящей среды или устройства для гашения дуги. Все элементы размещаются в общем корпусе. Срабатывание предохранителя происходит следующим образом. Вначале вставка нагревается до температуры плавления, после чего она расплавляется и испаряется. Одновременно возникает электрическая дуга, которая быстро гасится в изоляционном промежутке. После этого цепь в электроустановках оказывается полностью разорванной.

Обеспечить нормальную защиту можно лишь соблюдая определенные условия:

  • Времятоковая характеристика предохранителя должна быть ниже этого показателя на защищаемом участке.
  • Срабатывание происходит за минимальный промежуток времени.
  • Защитный элемент должен обладать высокой отключающей способностью.
  • Простая конструкция, позволяющая быстро заменить сгоревшую плавкую вставку.

Кроме одноразовых, существует автоматический предохранитель, проводящий ток в нормальном состоянии, и отключающий его в случае отклонений от нормы. Он устанавливается в начале линии и обеспечивает защиту электрооборудования от перегрузок, коротких замыканий и пониженного напряжения. Основным плюсом этих устройств считается их многоразовое использование в течение продолжительного времени.
Более серьезная защита от короткого замыкания, получившая широкое распространение, представлена автоматическим выключателем он же автомат. Все компоненты устройства помещены в корпус из диэлектрического материала. Для включения и выключения прибора предусмотрен выключатель-рычажок. Подключение проводов осуществляется через винтовые клеммы. Автомат коммутирует электрическую цепь с помощью подвижного и неподвижного контактов.

К подвижному контакту подводится пружина, обеспечивающая быстрое расцепление. Сами контакты разъединяются за счет действия электромагнитного или теплового расцепителя. Первое устройство срабатывает практически мгновенно, сердечник втягивается, когда ток превышает заданное значение. Тепловой расцепитель является биметаллической пластиной, нагревающейся под действием тока. Далее, она сгибается и производит разъединение контактов. Величина тока срабатывания устанавливается с помощью регулировочного винта.

Все про короткое замыканиеВсе про короткое замыкание

Режим короткого замыкания

Что такое ток короткого замыкания

Как рассчитать ток короткого замыкания

Формула тока короткого замыкания

Что такое короткое замыкание, его виды и причины возникновения

Причины возникновения короткого замыкания

Ударный ток и ударный коэффициент

Задача
№ 1

К шинам
неизменного напряжения 110 кВ подключены два трансформатора ТМ-6300 115/6,6 кВ,
UK=10 %, РК=40,6
кВт. К первому трансформатору подключена
линия, выполненная кабелем АСБ-3´95; . Ко второму трансформатору подключена воздушная линия,
выполненная алюминиевым проводом А-95, .

Определить: ударный ток и ударный коэффициент при коротком
замыкании непосредственно за трансформатором и на расстоянии 1 км на кабельной
и воздушной линии.

Сопротивления
трансформатора в именованных единицах на стороне низшего напряжения

Периодическая составляющая тока
короткого замыкания

Начальное значение апериодической
составляющей тока

Ударный коэффициент

где

Ударный ток

Для короткого замыкания на
кабельной линии на расстоянии 1 км

При коротком замыкании на
воздушной линии

Общее понятие короткого замыкания и его связь с силой тока

Любое подключение устройства потребления электроэнергии можно считать коротким замыканием. При этом само изделие является сопротивлением и всю нагрузку принимает на себя. Таким образом осуществляется штатная работа электроприбора. Но если сопротивление по какой-либо причине будет уменьшаться (стремиться к нулю), то сила тока будет возрастать. Из школьной программы всем известен закон Ома, который определяет взаимосвязь ЭДС (электродвижущей силы или напряжения), величиной тока и сопротивлением.

Сила тока при коротком замыкании участка цепи

Формула, по которой можно вычислить силу тока при коротком замыкании имеет следующий вид:

I=U/R,

  • -I – величина тока (его сила);
  • U – разность потенциалов (напряжение сети);
  • R – электрическое сопротивление.

Это упрощенная формула и она верна для участка цепи

При этом подразумевается, что проводники однородные, а в цепи присутствует резистор (сопротивление), но не принимается во внимание сам источник тока

Для полной сети формула будет иметь несколько усложненный вид, но в нашем случае для понимания сущности короткого замыкания в электрической цепи и его влияния на нее, это не принципиально.

Возвращаясь к формуле можно заметить, что при уменьшении сопротивления, сила тока будет возрастать. Казалось бы, что в этом нет ни чего страшного, если б в свое время Джоуль и Ленц не вывели закон, названный их именем. На основе своих опытов они пришли к заключению что при протекании электрического тока по проводнику выделяется тепло. Причем эта связь имеет не только количественную, но и временную характеристику. Кратко суть закона состоит в следующем – чем выше сила тока, тем большее количество тепла будет выделяться за единицу времени.

Сила тока при коротком замыкании источника питания

Любой источник тока, такой как батарея или аккумулятор состоит из отрицательного (анода) и положительного (катода) контакта разделенных жидким или твердым электролитом. Под действием химической реакции происходит формирование электрического заряда, который при замыкании на устройство потребления обеспечивает его функционирование. В упрощенном варианте батарею можно рассматривать как участок цепи для которого будут действовать вышеприведенные правила.

Причиной замыкания электродов по короткому пути, как правило, является нарушение изоляционного слоя. При этом сила тока многократно возрастает с выделением тепла, что приводит к перегреву и разрушению источника электроэнергии. При использовании жидкого электролита, как например, в большинстве автомобильных аккумуляторов. Это может привести к закипанию жидкости и разрушению корпуса.

Виды коротких замыканий

Данное явление нередко наблюдается под действием природных электрических аномалий. Как правило, это мощные грозовые разряды, сопровождаемые молниями. Их основным источником служит статическое электричество с огромным потенциалом, с различными знаками и величинами, накопленное облаками в процессе перемещения силой ветра с одного места на другое на большие расстояния.

Влажные пары, находящиеся в облаке, поднимаются на высоту, охлаждаются естественным путем. Образующийся конденсат проливается на землю в виде дождя. Из-за низкого сопротивления влажной среды воздушная прослойка подвергается пробою, по которому и проходит высокий электрический ток, представляющий собой молнию.

Для прохождения электрического разряда требуется два отдельных объекта с разными значениями потенциалов. Чаще всего, это два облака, идущие на сближение, или сама грозовая туча и поверхность земли. В первом случае опасность грозит в основном летательным аппаратам, а во втором под действие разряда могут попасть любое устройство или объект, в том числе и воздушные ЛЭП. Защита обеспечивается путем установки молниеотводов, нейтрализующих грозовые разряды.
В других случаях коротким замыканиям подвергаются цепи постоянного тока. У всех аккумуляторов или выпрямителей на выходе установлены контакты с положительным и отрицательным потенциалом. В обычных условиях они поддерживают рабочий режим схемы, обеспечивая нормальную работу потребителей.

Все процессы определяются математическим выражением закона Ома для полной цепи. Происходит равномерное распределение нагрузки в обоих контурах – внутреннем и внешнем.

При возникновении аварийной ситуации, между плюсовой и минусовой клеммами возникает непредвиденный контакт в виде короткой цепи, в которой чрезвычайно низкое электрическое сопротивление. Внешний контур выключается из работы, и циркуляция тока происходит лишь по внутреннему контуру с маленьким сопротивлением. ЭДС, при этом, остается неизменной, что приводит к резкому росту силы тока. Все это сопровождается большим тепловыделением и нарушениями целостности цепи.

Процессы в цепях переменного тока также попадают под действие закона Ома. В отличие от предыдущего варианта, эти схемы могут быть одно- или трехфазными, подключаться к заземляющему контуру. Короткие замыкания в таких цепях возникают в самых разнообразных формах: «фаза-земля», «фаза-фаза», «фаза-фаза-земля», «фаза-фаза-фаза», «фаза-фаза-фаза-земля».
В воздушных ЛЭП применяются изолированная и глухозаземленная схемы подключения нейтрали. В каждой из них ток короткого замыкания будет прокладывать собственный путь, который обязательно учитывается при создании защитной системы.

Иногда замыкания могут возникнуть внутри самой нагрузки, например, в электродвигателях. При одной фазе возможен пробой изоляции корпуса или нулевого проводника. У трехфазных потребителей возможны замыкания между фазами и другие аналогичные сочетания. В любом случае все это приводит к аварийному режиму с тяжелыми последствиями. Предотвратить подобные ситуации помогает автомат снимающий опасное напряжение с участка цепи и подключенного оборудования.

Меры профилактики по предотвращению КЗ

Предотвратить возникновение коротких замыканий в значительной степени помогают меры предосторожности и профилактические мероприятия. Наиболее важными из них являются следующие:

Наиболее важными из них являются следующие:

Перед тем как найти короткое замыкание в проводке, следует обращать внимание на заметное искрение или треск в розетке и выключателях, сопровождающиеся запахом горелой пластмассы. Именно эти факторы чаще всего приводят к аварийному режиму

В таких случаях нужно обязательно заменить неисправные установочные изделия.
Перед прокладкой новых проводов нужно заранее рассчитать мощность потребителей, которые будут использованы в данной сети. Правильно выбранное сечение предохраняет кабели от излишних перегрузок. В процессе монтажа проводка не должна быть перекручена. Кабели укладываются параллельно, а между ними оставляется свободное пространство.
При выполнении ремонтных работ, связанных со сверлением стен, необходимо заранее уточнить места прокладки кабельных линий.
Установка средств автоматической защиты позволит избежать негативных последствий, за счет отключения линии в момент КЗ.
Не реже 2-3 раз в год проводить плановые осмотры, выключателей, розеток, распределительных коробок, откуда расходятся провода и мощного оборудования. Проводку с алюминиевыми жилами по возможности лучше устраняем и меняем, поскольку этот материал при нагревании увеличивает сопротивление цепи, вызывая увеличенный нагрев, замыкание и расплавление кабельных линий.
При поиске короткого замыкания все действия с проводкой и электрическими приборами следует выполнять при строгом соблюдении техники безопасности. Выполняя рекомендации специалистов и точно соблюдая порядок действий, вполне возможно не только самостоятельно обнаружить аварию, но также исправить все ее последствия.

Поиск замыкания электропроводкиПоиск замыкания электропроводки

Как найти короткое замыкание в проводке автомобиля

Причины возникновения короткого замыкания

Что такое ток короткого замыкания

Что такое короткое замыкание, его виды и причины возникновения

Как рассчитать ток короткого замыкания

Формула тока короткого замыкания

Причины короткого замыкания

Чаще всего такая авария случается зимой. При наступлении холодов все включают электроконвекторы, электронагреватели, «дуйчики» и прочее. В сети поднимается нагрузка и нагревается провод. В старых проводках из-за этого часто ослабевают контакты, греется и может даже оплавиться изоляция. В результате возникает КЗ.

В других случаях к замыканию приводят банальные повреждения кабеля. Со временем ухудшается прочность изоляции, защищающей проводник, теряются ее свойства. В итоге, она может осыпаться или пробиться напряжением с фазного провода. Далее фаза и нейтраль спаиваются, от чего и возникает авария.

Также изоляция может повредиться механически. Например, если передавить кабель стулом или зацепить электрокосой. Вскрывается внешняя оболочка и оголенная часть фазы соприкасается с нейтралью. Иногда аварии случаются во время ремонта. Например, если кто-то сверлит стену или забивает гвоздь и случайно попадает в провод.

Повредить проложенный в стене кабель могут не только люди, но и грызуны. Особенно, если это частный дом или какое-либо подсобное помещение. Мыши и крысы с легкостью выедают дыры в деревянных досках, потому полиэтиленовая или ПВХ изоляция им вообще не преграда. При прорезании оболочки, оголенные проводники могут соприкоснуться, не без помощи того же грызуна.

Иногда урон проводке наносят и домашние питомцы. Например, коты и собаки часто играют с проводами и могут прокусить изоляцию. В результате сомкнутся контакты, и пострадает, не только животное, но и квартира.

Неправильно выбранный уровень пылевлагозащиты также может стать причиной КЗ. Например, если в ванной поставить розетку с низким показателем IP (незащищенную от влаги), в ней со временем будет скапливаться конденсат, а как известно вода — прекрасный проводник. Замкнутся контакты, и резко начнет повышаться температура. В итоге возникнет оплавление и деформация, вследствие чего оголившаяся «фаза» может соприкоснуться с «нулем».

Иногда сырость скапливается под обивкой и облицовкой. От этого на кабеле появляется плесень. Со временем повреждается оболочка, и влага проникает внутрь. Влага соединяет контакты и «мокрое место» начинает коротить и искриться. От этого происходит нагревание, и оболочка уже начинает плавиться. Как только соприкасаются контакты, проводка горит по всей длине.

Тем не менее часто короткое замыкание возникает и от банального нарушения техники безопасности. Например, раскололась или выпала розетка, а Вы продолжаете ею пользоваться. При нагрузке в поврежденной розетке ослабевают контакты, и в один момент фаза «отвалится» и соприкоснется с нулем.

Наверное, каждый в своей жизни видел ситуацию, когда в одну розетку натыкана куча тройников и электроприборов. От этого увеличивается нагрузка, розетка греется и уменьшается прочность контактов. Под весом переходников розетка может «с мясом» вырваться со стены. В результате повреждения «фаза» соприкоснется с «нулем» и возникнет КЗ.

Иногда КЗ случается и не по вине пользователей. Например, если рядом с квартирой находится стройка, и при включении мощного строительного оборудования возникают скачки напряжения. Резкое падение ниже 200В в однофазной сети выводит из строя чувствительное электрооборудование, особенно электронику. При поломке контакт противоположных полюсов может случиться внутри корпуса или на плате, из-за чего начнет гореть вся проводка.

Как говорится, «лучшая защита — это нападение», а лучший способ защититься от короткого замыкания — найти и устранить потенциальные его причины.

Определение ударного тока в сложной системе

Задача № 3

При трехфазном КЗ в
точке К вычислить ударный ток в месте короткого замыкания. Схема замещения при  имеет
вид

Последовательным  преобразованием находим

Рисунок 2

Рисунок 3

Начальный ток со стороны    T-3

.

Остаточное напряжение в точке А

.

Из этого следует, что
нагрузки S-1 и S-2 вряд ли окажут существенное влияние в подпитке места КЗ.

В суммарном активном
сопротивлении схемы существенную роль могут играть только  , 
тогда   ,                                 
отношение  .

Приняв для АД     находим
ударный ток

Доля тока от АД составляет 

Задача
№ 4

Рисунок 4. Исходная
схема для задачи 4

Генератор с   в
нормальном режиме работал с номинальным напряжением и нагрузкой 0.75 от
номинальной при cos  =
0.8 , реактивность Хк = 0.58 отнесенная к  номинальным условиям генератора. При
трехфазном коротком замыкании за Хк определить ток генератора и ток в месте КЗ.
Оценить влияние нагрузки, если ее величина 1,2  по отношению к номинальной
мощности генератора.

ЭДС генератора
составляет

.

Реактивность нагрузки,
приведенная к мощности генератора

.

Результирующая
реактивность

.

Результирующая ЭДС

.

Ток в месте короткого
замыкания

.

Напряжение генератора

.

Ток генератора

.

Если исключить нагрузку

.

Задача
№ 5

Для условий задачи 4
определить те же величины, считая что на генераторе установлено АРВ с  .

Критическая
реактивность

.

Внешняя  реактивность
по отношению к генератору

.

Поскольку    , 
генератор работает в режиме предельного возбуждения

.

Напряжение на выводах
генератора

.

Ток в месте короткого
замыкания

.

При отсутствии
нагрузки    , 
и генератор работает в режиме нормального возбуждения.

Примечание: в
настоящее время используется метод типовых кривых согласно приложению 1 рабочей
программы.

Двухфазное К3

Для расчета двухфазного К3 в точке К2 определяем следующие величины.

Полное суммарное сопротивление до точки К3 для двухфазного К3

мОм.

Ток двухфазного металлического К3

По кривым на рис. 6 коэффициенты снижения Кс1 и Кс2 при =37,44 мОм соответственно равны 0,78 и 0,69.

Токи двухфазного дугового К3

=6,17•0,78=4,81 кА   tкз ≈0

=6,14•0,69=4,26кА  tкз>0,05 с

Однофазное К3

Для расчета однофазного К3 в точке К2 определяем следующие величины:

Суммарные активное и индуктивное сопротивления нулевой последовательности относительно точки К2 в соответствии со схемой замещения нулевой последовательности (рис. 10):

R0∑=1,9+0,555+0,25+0,65+98,9=102,25 мОм

X0∑=12,65+0,63+0,1+0,17+24,4=38 мОм.

Полное суммарное сопротивление до места К3 при однофазном К3

Ток однофазного металлического К3

кА.

Определяем токи дугового К3

По кривым на рис. 6 коэффициенты снижения Кс1 и Кс2 при =57,2 мОм соответственно равны 0,82 и 0,72.

=4,04•0,82=3,31 кА   tкз ≈0

=4,04•0,72=2,91кА   tкз>0,05 с

Все результаты расчетов токов К3 приведены в таблице 4, что представляется удобным для дальнейшего анализа, выбора уставок защитных аппаратов и проверки кабелей.

Результаты расчетов токов К3

Виды К3

Точка К3

IКМ

кА

IКД НАЧ

кА

IКД УСТ

кА

iУД

кА

IКМ

кА

IКД НАЧ

кА

IКД УСТ

кА

IКМ

кА

IКД НАЧ

кА

IКД УСТ

кА

К1

15,27

10,23

8,86

34,6

13,2

8,98

7,92

15,66

10,33

9,1

К2

7,14

5,28

4,78

10,6

6,17

4,81

4,26

4,04

3,31

2,91

Этот пример наглядно показывает, что аналитические методы расчетов токов К3 очень трудоемкий, особенно для электроустановок с большим количеством элементов 0,4 кВ

Поэтому еще раз обращаем внимание на необходимости освоения и более широкого применения для практических расчетов компьютерных программ, в том числе, программа, которая разработана на кафедре РЗА ПЭИпк и успешно используется на многих энергообьектах (описание программы см. на стр

3).

Виды КЗ

Согласно ГОСТ 52735-2007, в энергосетях короткие замыкания принято разделять на несколько видов. Для наглядности ниже представлены схемы различных видов КЗ.


Различные виды КЗ

Обозначения с кратким описанием:

  1. 3-х фазное, принятое обозначение – К(З). То есть, происходит электрический контакт между тремя фазами. Это единственный вид замыкания не вызывающий «перекос» фаз, процесс протекает симметрично, что упрощает расчет силы тока КЗ. В тоже время 3-х фазное замыкание представляет наибольшую опасность по факторам тепловых и электродинамических воздействий. В связи с этим, когда производится расчет тока КЗ для трехфазной цепи, как правило, рассматривается данный вид замыкания.

Характерно, что при К(З) наличие контакта с землей не отражается на параметрах процесса.

  1. 2-х фазное (K(2)). Данный вид замыкания, как все последующие, относится к несимметричным процессам, вызывающим перекос напряжений в системе. В кабельных линиях электропередач довольно велика вероятность перехода процесса K(2) в К(З), поскольку температура в месте замыкания разрушает изоляцию токоведущих частей.
  2. 2-х фазное с землей (K(1,1)). Данный процесс можно наблюдать в системах с заземленной нейтралью.
  3. 1-о фазное с землей (K(1)). Этот вид замыкания на практике встречается чаще всего. Характерно, что процесс может возникнуть как в бытовых или промышленных электросетях, так и в запитанном от них оборудовании.
  4. Двойное на землю (K(1+1)). То есть, две фазы замыкаются через землю, не имея электрического контакта между собой. Такой вид замыкания возможен в системах с заземленной нейтралью.

Мы привели только пять видов замыканий, которые чаще всего встречаются на практике. С полным списком возможных вариантов и поясняющими схемами можно ознакомиться в приложении 2 к ГОСТу 26522 85.

Вероятность возникновения каждого из рассмотренных выше вариантов приведена в таблице. Как видно из нее чаще всего наблюдаются однофазные короткие замыкания.

Таблица 1. Распределение, составленное по аварийной статистике.

Обозначение КЗ Процентное соотношение к общему числу (%)
К(З) 5,0
K(2) 10,0
K(1) 65,0
K(1,1) и K(1+1) 20,0

Разобравшись с видами замыканий, рассмотрим, в каких ситуациях они могут возникнуть.

Оцените статью
Рейтинг автора
5
Материал подготовил
Илья Коршунов
Наш эксперт
Написано статей
134
Добавить комментарий