Ультразвуковой уровнемер

Применение и преимущества

Датчики расстояния широко применяются в повседневной жизни. Автомобили оснащены датчиками парковки. Помимо измерения расстояний они могут просто зарегистрировать присутствие объекта в диапазоне измерений, например, в опасных зонах рабочих машин. Такие приборы используются в широком спектре отраслей промышленности, например:

  • в печати;
  • при конвертировании;
  • в робототехнике;
  • во время обработки материалов;
  • в транспортировке и т. д.

Датчики расстояния могут использоваться для контроля или указания положения предметов и материалов. Эти приборы настолько широко применяются, что они могут быть надёжно реализованы в приложениях для измерения зернистости материала, определения уровня воды и многого другого, так как ультразвук отражается почти от любых поверхностей. Исключение составляют только мягкие материалы, например, шерсть. Её поверхность поглощает ультразвуковую волну и не отражает звук.

Гаджеты соединяются со всеми распространёнными типами средств автоматизации и телеметрии. Приложения варьируются от простых аналоговых подключений до сложных сетей передачи данных с несколькими датчиками.

Ультразвуковой дальномер и Raspberry Pi.Ультразвуковой дальномер и Raspberry Pi.

Линейный датчик УЗИ

Итак, какие особенности характерны для использования линейного преобразователя (например, GE 9L)?

Во-первых, размещение пьезоэлектрического кристалла линейно, форма луча прямоугольна, а разрешение ближнего поля хорошего качества.

Во-вторых, величина, частота и зона применения линейного датчика УЗИ зависят от того, рассчитан ли продукт для 2D или же 3D визуализации.

Линейный датчик УЗИ для 2D-визуализации

Кроме того, линейный датчик УЗИ для 2D – визуализации имеет широкий след, а его центральная частота является 2,5 МГц-12 МГц.

Вы можете использовать этот датчик для различных применений, например:

  • Исследование сосудов.
  • Венепункции, визуализация кровеносных сосудов.
  • Грудь.
  • Щитовидная железа.
  • Сухожилия, артрогенные.
  • Интраоперационная лапароскопия.
  • Определение толщины жировых отложений, а также мышц для ежедневной проверки здоровья и проверки локомотивного синдрома.
  • Фотоакустическая визуализация, ультразвуковая визуализация изменения скорости.

Линейный датчик УЗИ для 3D-визуализации

Линейный преобразователь УЗИ для 3D-визуализации обладает широким следом и центральную частоту 7,5 МГц-11 МГц.

Для чего вы можете использовать этот преобразователь?

  • Грудь;
  • Щитовидная железа;
  • Артериальная сонная артерия сосудистого применения.

Сроки пыления растений в Украине и структура поллинозов

Применение датчиков обнаружения движения

Некоторые из ключевых применений детекторов, когда необходимо отслеживать движение:

  • аварийные сигналы вторжения
  • управление автоматическими воротами,
  • переключение освещения на входе,
  • аварийное освещение безопасности,
  • туалетные сушилки рук,
  • автоматическое открывание дверей и др.

Ультразвуковые датчики используются для управления камерой слежения жилой недвижимости или, например, для съемки живой природы.

Инфракрасные сенсоры применяются для подтверждения наличия продуктов на конвейерных лентах

Ниже приведён практический пример использования датчиков активного и пассивного обнаружения движения.

Контроллер уровня жидкости на ультразвуковых датчиках

На приведенной ниже схеме показано, как контроллер (из набора Arduino) управляет уровнем жидкости, используя ультразвуковой датчик движения. Система работает, обеспечивая точные уровни жидкости в баке, управляя двигателем, определяя заданные пределы жидкости.

Практический пример реализации задачи на базе ультразвукового прибора и популярного набора Arduino, наглядно демонстрирующий ультразвуковой датчик движения что такое и как работает

Когда жидкость в резервуаре достигает нижнего и верхнего пределов, ультразвуковой датчик движения обнаруживает эти пределы и посылает сигналы на микроконтроллер. Микроконтроллер запрограммирован таким образом, чтобы управлять реле, которым в свою очередь управляется двигатель насоса. За основу берутся сигналы предельных условий, заданных на ультразвуковом датчике движения.

Датчик движения и автоматическое открывание дверей на PIR

Как и в приведенной выше системе, автоматическая система открывания дверей с использованием датчика движения PIR. В этом случае обнаруживается присутствие людей и выполняется операция с дверьми (открытие или закрытие).

Другая схема, где задействован уже прибор пассивного действия. Здесь также используется популярный конструктор Arduino – инструмент удобный для экспериментов и построения реальных электронных систем

Детектором PIR обнаруживается присутствие людей, после чего отправляется сигнал обнаружения движения микроконтроллеру. В зависимости от сигналов от датчика PIR, микроконтроллер управляет двигателем дверей в режимах прямого и обратного хода с помощью IC-драйвера.

Скетч

Последняя часть проекта — загрузка кода ультразвукового датчика в Arduino. Подключите Arduino к настольному компьютеру или ноутбуку с помощью USB-кабеля. В Arduino IDE, введите код, представленный ниже. Вы также можете загрузить код на жесткий диск вашего настольного компьютера или ноутбука. В IDE, вы можете загрузить код, нажав на горизонтальную стрелку.

Этот эскиз считывает ультразвуковой дальномер PING))) и возвращает расстояние до ближайшего объекта, находящегося в радиусе действия. Для этого он посылает импульс на датчик, чтобы инициировать считывание, а затем прослушивает, чтобы импульс вернулся. Длина возвращаемого импульса пропорциональна расстоянию до объекта от датчика.

Схема:

  • +V подключение PING))) подключено к +5V
  • GND-соединение PING))) подключено к заземлению.
  • SIG-соединение PING))) подключено к цифровому контакту 7

Код проекта:

В IDE сразу видно изменение данных о расстоянии. На рисунке показаны данные примера сессии измерения расстояния.

Поместите небольшую линейку между ультразвуковым датчиком и объектом, от которого вы измеряете расстояние. Насколько точны ваши показания по сравнению с фактическим измеренным расстоянием?

Измерения должны быть очень близки к идентичным, что означает, что вы успешно создали электронную рулетку. С помощью электронной рулетки вы можете замерять расстояние до различных объектов.

Как использовать?

Чтобы датчики работали исправно, их устанавливают в дверных проемах и особых зонах в доме или на участке

Если они используются для освещения, важно располагать их так, чтобы при перемещениях человека свет во всех частях помещения горел, пока человек не покинет его. На больших площадях устанавливают от двух приборов так, чтобы они охватывали всю территорию

В помещениях лучше использовать потолочные модели.

Схема выше: Принцип работы ультразвуковых сенсоров.
При размещении ультразвуковых контроллеров движения важно, чтобы свет ламп не попадал на них, а на их пути отсутствовали перегородки. В радиусе действия контроллера нельзя устанавливать крупные предметы, они затруднят обзор

Кондиционеры и другие отопительные приборы влияют на правильную работу датчика, поскольку нагретый воздух двигается, что воспринимается за движение объекта.
При расположении контроллеров на улице, надо заранее прочертить план территории. На пути у ультразвуковых волн не должно быть других построек, высоких деревьев и ярких осветительных приборов, направленных на них. Кроме того, датчикам нет места в зонах воздействия атмосферных осадков и прямых солнечных лучей. Не помешает периодическая чистка линз и корпуса от загрязнений.

Другие типы датчиков УЗИ

На рынке существует еще несколько видов ультразвуковых датчиков УЗИ. Такие как:

Карандашный датчик УЗИ

Карандашные преобразователи, также называемые CW-доплеровскими зондами, их используют для замера кровотока, а также скорости звука в крови.

Этот зонд имеет небольшой размер и использует низкую частоту (обычно 2 МГц– 8 МГц).

Эндокавитальный датчик УЗИ

Кроме того, существует эндокавитарный тип ультразвукового датчика.

Эти зонды дают вам возможность осуществлять внутренние обследования пациента.

Поэтому они предназначены для установки в определенные отверстия корпуса.

Эндокавитальный датчик УЗИ

Эндокавитальные преобразователи включают эндовагинальные, эндоректальные и эндокавитальные преобразователи.

Как правило, они имеют небольшие следы и частота их колеблется в диапазоне 3,5 МГц – 11,5 МГц.

Чреспищеводный датчик УЗИ

Кроме того, имеется чреспищеводный (ТРОЙНИКОВЫЙ) зонд.

Как и ранее упомянутые зонды, он имеет небольшой размер и применяется для внутренних обследований.

Он часто используется в кардиологии, чтобы получить качественные изображения УЗИ сердца через пищевод.

Частота средняя, в диапазоне 3мгц-10МГц.

Зонды используемые в хирургии

Кроме того, существует несколько зондов, специализированных для хирургического использования, например – лапароскопические зонды.

Также смотрите Ультразвуковая диагностика.

Преимущества и недостатки

Преимущества ультразвуковых уровнемеров:

  • производство измерений без непосредственного контакта с жидкой средой, что позволяет работать с агрессивными жидкостями. К приборам не предъявляются повышенные требования к защищенности от негативных факторов внешней среды;
  • возможность измерения уровня без проникновения внутрь емкости, размещая датчик снаружи;
  • цена ниже другого типа бесконтактных сенсоров — радарных датчиков, вследствие более простой конструкции и менее дорогих комплектующих;
  • отражение ультразвука происходит от границы жидкости и газа, поэтому точность измерения не зависит от плотности жидкой среды, ее химических и физических свойств;
  • компактность;
  • мультисенсорность. Датчик служит для получения дополнительной информации о состоянии жидкости и емкости. Зависит от конкретной модели прибора.

Недостатки сенсоров уровня жидкости:

  • ошибочные данные из-за отражения ультразвуковых сигналов от конструктивных элементов емкости. Необходимо на стадии монтажа прибора не допускать нахождения элементов конструкции во фронтальной плоскости датчика. В узких баках ультразвуковые датчики не применяются;
  • показания прибора будут ошибочными при давлении газовой среды, большем или меньшем атмосферного. В вакууме прибор работать не будет. В подобных случаях необходимы сенсоры, использующие другие физические принципы;
  • зависимость точности измерений от температуры и состава газовой среды, ее влажности, загрязненности, запыленности;
  • искажения результатов измерений при образовании на поверхности жидкости пены либо турбулентных завихрений.

Основные неисправности УЗИ аппарата и методы их диагностики и устранения

1. Выход из строя блока питания

Основные признаки выхода из строя источников питания:

  • УЗИ сканер не включается
  • УЗИ оборудование периодически не включается
  • При включении узи аппарата можно услышать звуки треска
  • Узи сканер может выключиться сам по себе

В большинстве случаев такие неисправности появляются из-за проблем с напряжением. Скачки параметров сети, отключение электричества — все это может нанести значительный ущерб сканеру. Чтобы избежать дорогостоящего рекомендуем использовать ИБП (источник бесперебойного питания) с двойным преобразованием, что значительно продлевает жизнь блока питания. Также эта проблема наблюдается у оборудования, которое уже длительное время находится в эксплуатации, ведь элементы блока питания тоже имеют свой срок службы.Симптомы — УЗИ сканер не включается либо самопроизвольно перезагружается.Решение — замена блока питания либо ремонт блока питания на компонентном уровне

Компонентный ремонт блоков питания — это замена элементов на новые, что в разы сложнее блочной замены, но данный вид ремонта — дешевле и быстрее.

подробнее читайте тут

  • ремонт блока питания ,
  • https://intellect.icu/3-1-3-algoritmy-nakhozhdeniya-neispravnostej-bloka-pitaniya-pk-3271

2. Проблема с жестким диском

Как правило, проблема связана с возрастом узи сканера, жесткий диск изнашивается и выходит из строя, поэтому не забывайте периодически делать бэкап данных вашей системы.

У многих производителей эта возможность уже встроена в систему, но даже если ее нет, сохранить данные и сделать полный бэкап всего архива можно через внешние системы.

Главное – доверить это специалисту, чтобы в процессе сохранения случайно не повредить структуру диска или сами данные.

Симптомы — УЗИ аппарат не загружается до конца, периодически зависаетРешение — замена жесткого диска.

подробнее читайте тут

  • Жесткий диск издает звуки:Проверка HDD на ошибки и битые сектора. Симтомы проблем с жестким диском
  • https://intellect.icu/zhestkij-disk-izdaet-zvuki-proverka-hdd-na-oshibki-i-bitye-sektora-simtomy-problem-s-zhestkim-diskom-6790
  • Состояние жестких дисков,
  • ремонт жесткого диска, диагностика жесткого диска
  • https://intellect.icu/sostoyanie-zhestkikh-diskov-i-tekhnologiya-smart-i-prognozirovanie-sboev-g-sensor-v-hdd-vidy-neispravnostej-hdd-nadezhnost-zhestkikh-diskov-mtbf-afr-uer-faktory-vliyayushhie-na-nadezhnost-6801

3. Выход их строя монитора, принтера

Если периферийные устройства сломались — это не повод менять их, очень часто их с успехом получается восстановить.

  • подробнее читатйте тут

  • ПРИНЦИП ПОСТРОЕНИЯ И ОСНОВНЫЕ ВИДЫ НЕИСПРАВНОСТЕЙ ЖК — МОНИТОРОВ И МЕТОДИКА ИХ РЕМОНТА

  • ремонт монитора,диагностика монитора

  • ремонт принтера,диагностика принтера

  • https://intellect.icu/3-2-11-printsip-postroeniya-i-osnovnye-vidy-neispravnostej-zhk-monitorov-i-metodika-ikh-remonta-3290

4. Проблемы с УЗИ датчиками

Проблем с ультразвуковыми датчиками более чем достаточно, начиная от дефектов изображения заканчивая физическими дефектами самого датчика. В этой статье мы описали основные проблемы, с которыми мы сталкиваемся при ремонте узи датчиков

подробнее читайте ниже

5. Неполадки клавиатуры и трекбола (залипание или заедание, полная неработоспособность).

Проблемы возникают, как правило, из-за отсутствия технического обслуживания.
Решение — чистка либо замена.

подробнее читайте тут

  • ПОИСК НЕИСПРАВНОСТЕЙ ДРУГИХ ВИДОВ ПЕРИФЕРИЙНОГО ОБОРУДОВАНИЯ
  • ДИАГНОСТИКА И ОБСЛУЖИВАНИЕ УСТРОЙСТВ ВВОДА — КЛАВИАТУРЫ И МАНИПУЛЯТОРА ТИПА МЫШЬ
  • ,диагностика клавиатуры
  • https://intellect.icu/3-4-poisk-neispravnostej-drugikh-vidov-periferijnogo-oborudovaniya-3-4-1-diagnostika-i-obsluzhivanie-ustrojstv-vvoda-klaviatury-i-manipulyatora-tipa-mysh-3295

Описание ультразвуковых датчиков Microsonic

Принципы работы ультразвуковых датчиков.

Ультразвуковые датчики излучают короткие высокочастотные звуковые импульсы определенного интервала. Они распространяются в воздухе со скоростью звука. При встрече с объектом, звуковая волна отражается от него обратно в качестве эха.
Датчик воспринимает этот сигнал и рассчитывает расстояние до объекта, основываясь на временном промежутке между измерением сигнала и получением эха сигнала.

Ультразвуковые датчики идеально подавляют фоновые шумы, так как расстояние до объекта определяется с помощью измерения времени полета звуковой волны, а не её интенсивности. Практически все материалы, отражающие звук, могут
использоваться в качестве объектов обнаружения, независимо от их цвета. Даже прозрачные материалы и тонкие пленки не представляют проблемы для ультразвуковых датчиков. Ультразвуковые датчики Microsonic могут определять цели на
расстоянии от 30 мм до 8 м, при этом производя измерения с очень высокой точностью. Некоторые модели датчиков способны выполнять измерения с точностью до 0,18 мм. Ультразвуковые датчики могут видеть через запыленный воздух, туман или
частицы тонера. Даже небольшой налет на мембране сенсора не влияет на его работу. Слепая зона датчика составляет всего 20 мм, а плотность излучаемого потока очень мала, что делает возможным использование датчиков в совершенно новых
применениях. Датчики измеряют уровень заполнения небольших бутылок на конвейере, и даже могут определить наличие тонких нитей.

Общее описание ультразвуковых датчиков с аналоговым и дискретным выходом.

Ультразвуковой датчик представляет собой устройство, состоящее из ультразвукового излучателя, электронной части и на противоположной стороне – выходной разъем или кабель. Датчик формирует аналоговый
сигнал, пропорциональный расстоянию до объекта или дискретный сигнал, который изменяется при достижении объектом заранее установленного расстояния.

На электронной части находится пьезоэлемент, который излучает ультразвук в режиме генерации и преобразует принятые колебания в электрический ток в режиме приема. Внутри датчика расположены схемы управления
и преобразователи. Электронная схема измеряет время прохождения УЗ в среде и преобразует его в аналоговый или цифровой выходной сигнал.

Различают следующие типы датчиков:

  • устройства, работающие на принципе отражения сигнала от объекта;
  • устройства, обнаруживающие объект, находящиеся между приемником и передатчиком.

Точность измерения зависит от следующих факторов:

  • температура окружающей среды (в связи с этим введена температурная компенсация);
  • влажность воздуха, в котором распространяется ультразвук;
  • давление среды.

Так как основную информацию о расстоянии до объекта дает отраженный сигнал, характеристика поверхности наряду с углом падения звуковой волны значительно влияет на работу УЗ-датчиков. Лучше всего датчики работают
с хорошо отражающими поверхностями: стеклом, жидкостями, гладким металлом, деревом, пластиком. Для устойчивой работы датчика рекомендуется, чтобы поверхности с грубым рельефом располагались в положении,
близком к перпендикулярному направлению луча. Для гладких поверхностей, допустимо отклонение от перпендикулярного направления УЗ луча не более, чем на 3 градуса.

В месте установки датчиков следует избегать завихрений воздушных потоков, а также учитывать факт взаимного влияния датчиков при их близком расположении друг к другу. Здесь можно опираться на данные таблицы,
приведенной в разделе «Правила установки».

Описание и назначение

Датчик ультразвука — техническое устройство, которое состоит из нескольких основных частей:

Излучатель

Наиболее распространены два вида излучателей: магнитострикционный и пьезоэлектрический.

Магнитострикционный — ультразвуковые колебания возникают при изменении линейных размеров ферромагнетика в переменном магнитном поле.

Достоинства:

  • надежность — не менее 10 000 часов непрерывной работы;
  • коэффициент полезного действия 80%.

Недостатки:

  • сложная конструкция;
  • необходимо водяное охлаждение.

Пьезоэлектрический – ультразвуковые волны возникают при изменении линейных размеров диэлектрика, выполненного в виде мембраны, в переменном электрическом поле.

Достоинства:

  •  простота конструкции;
  • получение ультразвука широкого частотного диапазона;
  • незначительные размеры.

Недостатки:

  • низкая мощность излучения.
  • В ультразвуковых датчиках используются в основном пьезоэлектрические излучатели.

Приемник

Пьезоэлектрический эффект имеет обратную сторону: ультразвук, попадая на пьезоэлемент, вызывают в нем колебательные движения, в результате которых возникает электрический ток.   На этом принципе работают датчики ультразвукового излучения: возникновение тока в электрической цепи говорит о появлении объекта перед прибором.

По конструкции приемо-передающей системы выделяют два типа датчиков:

с одной головкой

В данной схеме передатчик и приемник — единый элемент. Мембрана, излучив ультразвук, принимает отраженный сигнал и формирует электрический сигнал. Это упрощает конструкцию, уменьшает размер.  Однако есть недостаток. Мембрана после излучения не может сразу перейти к приему – необходимо время, чтобы колебания погасли. Этот период получил наименование «мертвое время». Расстояние до приемника, ближе которого отраженный объектом сигнал будет попадать на мембрану в мертвое время, называется слепой зоной. На таком расстоянии прибор не фиксирует сигнал, и объект не обнаружиться.  С этим явлением борются.  При помощи настроек и специальных режимов работы удается уменьшить слепую зону в 2 раза, но полностью устранить ее невозможно.

с двумя головками

Назначение датчика ультразвука — фиксация появления объектов в зоне действия, измерение расстояния до них, подсчет перемещающихся в зоне обзора предметов, определения уровня сыпучих грузов и жидкостей. При выполнении этих задач он может работать в темноте, в условиях задымленности, запыленности, повышенной влажности, высоких и низких температур. Прибор нечувствителен к звуковым сигналам слышимого диапазона.   При необходимости легко регулируется на другие измерительные диапазоны.

Конструктивные особенности

Ультразвуковые датчики оснащены генератором звуковых волн, что работает на частоте от 20 до 60 кГц (этот показатель зависит от производителя). Генератор излучает УЗ волны, которые отражаются от предметов в радиусе их действия и возвращаются в приемник. При обнаружении движения частота отражённой волны меняется, что и отражается на приемнике. В результате подается сигнал на включение света.
Сам корпус устройства может быть выполнен из высокопрочного пластика, металла. Зависит это от назначения датчика. Кроме того, предусматривается защита линзы от механических повреждений. В этом случае применяется прочное каленое стекло. Всё зависит от производителя и требований к устройству. Крепление конструкции чаще осуществляется на кронштейн, что входит в комплект. Но иногда его приобретают отдельно.

Метод определения зоны обнаружения ультразвуковых датчиков Microsonic

Наиболее важным критерием при выборе ультразвукового датчика является его дальность обнаружения и связанная трехмерная зона обнаружения. При ультразвуковом измерении, различные стандартные отражатели вводят извне в
зону обнаружения датчика на расстоянии, на котором эти отражатели начинают определяться датчиком. Объекты могут быть введены в зону обнаружения с любого направления.

Красные области определяют размеры тонкого круглого стержня (10 или 27 мм., в зависимости от типа датчика), характеризующий рабочий диапазон датчика.

Для определения голубых областей: пластина (500×500 мм) устанавливается на пути распространения луча ультразвука. При этом применяется оптимальный угол между пластиной и датчиком. Таким образом, это указывает
на максимальную зону обнаружения датчика. За пределами синей области, объект уже невозможно обнаружить.

Отражатель с отражающими свойствами хуже, чем у круглого стержня, может определяться в зоне меньше, чем красная область. В свою очередь, отражатель с лучшими свойствами будет определяться в области между красной и голубой областями.
Слепая зона датчика определяет его наименьший допустимый диапазон обнаружения. Объекты или отражатели нельзя располагать в слепой зоне, поскольку это приведет к неверным измерениям.

Рабочие диапазоны приведены на диаграмме. В этих диапазонах, датчик будет гарантированно определять наличие обычных отражателей. Также, на диаграмме приведены области обнаружения датчиком отражателей с хорошими
отражающими свойствами. Максимальная дальность обнаружения всегда больше, чем рабочий диапазон. Диаграммы составлены для 20 °C, относительной влажности 50% и атмосферном давлении. Конкретные зоны обнаружения зависят от типа
датчика, и их можно посмотреть, пройдя в раздел соответствующего датчика, во вкладку «Зоны обнаружения».

Эти символы в технических параметрах определяют рабочий диапазон ультразвуковых датчиков Microsonic

Затухания звука в воздухе зависят от температуры и давления воздуха, а также его относительной влажности. Физические параметры связаны и оказывают различный эффект на разных частотах ультразвука. Для простоты можно
сказать, что затухание в воздухе увеличивается с повышением температуры и повышением влажности. Это уменьшает рабочий диапазон датчика.

При более низкой относительной влажности и пониженной температуре, затухание в воздухе уменьшается и рабочая зона соответственно увеличивается.

Уменьшение рабочего диапазона в основном компенсируется за счет настроек датчика. И при температуре ниже 0 °C, некоторые датчики могут работать на расстояниях, вдвое превышающим приведенные здесь.

При повышении давления, затухание в воздухе значительно уменьшается. Этот аспект должен учитываться при применении датчика в среде с повышенным давлением. Распространение звука невозможно в вакууме.

Плюсы и минусы

Теперь что касается сильных сторон:

  • датчики имеют хорошую — порой даже избыточную — чувствительность, которой более чем достаточно для определения объекта в зоне видимости;
  • легкая установка;
  • большинство моделей имеют хороший защищенный корпус, что позволяет защититься от воды, пыли или непосредственного урона.

В качестве же недостатков выступают:

  • в зависимости от выбранного вида будет меняться сложность настройки — предварительно стоит тщательно сформулировать цели и задачи, и только потом что-либо приобретать;
  • большая часть настраиваемых параметров сильно зависит от погоды: в моделях высшего сегмента это исправлено посредством предоставления возможности для настройки шаблонов, которые могут быть быстро изменены;
  • дорогой ремонт, несмотря на легкость конструкции: заменить на новый зачастую проще.

Тем не менее не стоит сильно на этом зацикливаться. Порой бывают обстоятельства, в которых датчик объема единственный возможный вариант. В этом случае недостатки можно нивелировать правильным выбором и адаптацией помещения.

Сфер применения датчика объема до сих пор по-прежнему много. Он используется как для автомобильной сигнализации, так и в помещениях вне зависимости от их типа. Они будут идеальны для противоугонной системы, но нужно грамотно выбрать место расположения. Хорошо в такой сфере показывают себя микроволновые модели. Соотношение цены и качества предоставляет потенциальным пользователям максимальную производительность и простую в установке и настройке. Замена такого устройства также не требует особых навыков и с ней справится буквально любой.

Ниши применения

Применение датчика расстояния весьма широко. В бытовой жизни его используют в парктрониках или высотомерах дронов. Встречается он в качестве своеобразных «глаз» робота-пылесоса, как и любого другого подвижного автомата. Последнее касается не только конструкций, от которых мало зависит жизнь человека, но и таких средств обеспечения его безопасности, как системы, уменьшающие шанс аварийного столкновения автомобилей или автобусов. В настоящих случаях, определив близкое препятствие при помощи звукового дальномера, связанный микроконтроллер включит аварийные тормоза.

Пригодится «высокоинтеллектуальный» дальномер и инвалидам или плохо видящим людям, в качестве дистанционного измерителя расстояния до различных препятствий. Последний можно изготовить в виде направленного датчика, закрепляемого на грудь или голову и подающего звуковой сигнал в зависимости от наличия предметов перед ним. Или же классически — закрепив чувствительный элемент на трость. В последнем случае ей даже не понадобиться дотрагиваться до поверхности, чтобы сообщить плохо видящему о наличии препоны на его пути.

Дополнительно, используя сонар, можно строить условную карту местности, с приблизительным расстоянием до предметов. Последнее сильно выручит в средах не совместимых с жизнью человека. Похожая технология, к примеру, используется в морском деле — с ее помощью строится карта дна и определяется высота структур на нем находящихся.

Ультразвуковой датчик Ардуино не единственный детектор определяющий дальность до предмета. Используются и варианты, основанные на других излучениях. К примеру, для настоящего микроконтроллера разработан инфракрасный датчик расстояния и лазерный дальномер. Каждый из видов сенсоров обладает определенными плюсами и минусами, дающими им преимущество в конкретных сферах. К примеру, лазер дает слишком узкий сектор обзора, а у инфракрасного дальномера малое расстояние определения препятствий и зависимость точности от их температуры. Плюсом в первом случае служит точность расстояний, во втором независимость от звукового фона.

Использование ультразвукового дальномера

Пьезоэлектродвигатели

ПьезоэлектродвигателиПьезоэлектродвигатели

Пьезоэлектрический преобразователь как альтернативный источник энергии

Пьезоэлектрический преобразователь как альтернативный источник энергииПьезоэлектрический преобразователь как альтернативный источник энергии

Пьезоэлектрические преобразователи в ультразвуковой диагностике

Импульсные ультразвуковые сонары открытого типа

Пьезо-сенсор стука на Arduino UNO

Пьезо-сенсор стукаПьезо-сенсор стука
Справочник ультразвуковых излучателей и приемников

400EP250 Pulse Transit Enclose Type Ultrasonic TransduceСеть магазинов «Кварц»

https://www.stroykat.by/tipyi-datchikov-rashoda-zhidkostey.html

Технические характеристики

  • Напряжение питание: 5 В
  • Потребление в режиме тишины: 2 мА
  • Потребление при работе: 15 мА
  • Диапазон расстояний: 2–400 см
  • Эффективный угол наблюдения: 15°
  • Рабочий угол наблюдения: 30°

Описание продукта:

ТК T 40-16 т/r 1

  • (Tc): piezoceramics Ультразвуковой датчик
  • (T): Категория t-общность
  • (40): Центральная частота (кгц)
  • (16): наружный диаметр? (мм)
  • (T): использование режим: излучатель; r-приемник; tr-совместимость излучатель и приемник
  • (1): ID — 1,2, 3…

Тестирования цепи

  • 1 синусоидальный генератор 1 охватил сигнала Генератор
  • 2 cymometer 2 Частотомер
  • 3 стандартных динамик 3 вольтметр
  • 4 Получить модель датчика 4 излучают модель датчика
  • 5 осциллографа 5 Стандартный микрофон
  • 6 аудио частотные характеристики Дисплей прибора

Производительность продукта1). Номинальная частота (кГц): 40 кГц
2). излучать звук pressureat10V (= 0.02Mpa):? 117dB
3). Прием Чувствительность приемника at40KHz (дБ = v/ubar):?-65dB
4). Электростатический потенциал at1KHz, <1 В (PF): 2000 +/-30%
5). Диапазон обнаружения (м): 0.2 ~ 20
6).-6дБ угол направления: 80o
7). Обшивка материал: алюминий
8). Обшивка ЦВЕТ: серебристый

УСТРОЙСТВО

RCW-0012

Ультразвуковой дальномер HC-SR04 Arduino

Ультразвуковой датчик определяет расстояние до объекта так же, как это делают летучие мыши или дельфины. Датчик HC-SR04 генерирует узконаправленный сигнал на частоте 40 кГц и ловит отраженный сигнал (эхо). По времени распространения звука до объекта и обратно можно достаточно точно определить расстояние до него.

По этому же принципу работает множество приборов для исследования пространства — эхолот, сонар, радиолокатор и даже полицейский радар для определения скорости автомобиля. Все эти приборы излучают узконаправленный ультразвуковой сигнал и получают обратно отраженный сигнал. В отличии от инфракрасных дальномеров (IR), на показания ультразвукового датчика не влияет цвет объекта.


Принцип работы ультразвукового дальномера HC-SR04

Но при настройке ультразвукового датчика на Ардуино могут возникнуть трудности с определением расстояния до звукопоглощающих объектов, поскольку они способны полностью погасить излучаемый сигнал. Для идеальной точности измерения расстояния, поверхность изучаемого объекта должна быть ровной и гладкой. Принцип работы ультразвукового датчика hc-sr04 показан на рисунке выше.

Заключение

Различные улучшения в дорожной безопасности, внедряемые изготовителями автомобилей и, особенно, системы активной безопасности остаются в фокусе внимания как потребителей, так и правительств государств. Основное назначение этих систем — уменьшение числа аварий, которое все еще остается значительным. Так, согласно недавнему исследованию ABI Research в автомобильных авариях в США и Европе гибнут ежегодно более 40 000 людей. Анализ возможностей технологий безопасности, которые включают ультразвуковые, радарные, лидарные системы и видеодатчики, глобальных направлений, а также обсуждение существующей продукции в рамках данного цикла предназначены ответить на вопрос, какие из конкурирующих технологий и в каких применениях сегодня предлагают наилучшие характеристики — для того чтобы эта информация затем могла быть использована как разработчиками, так и потребителями этих технологий.

Оцените статью
Рейтинг автора
5
Материал подготовил
Илья Коршунов
Наш эксперт
Написано статей
134
Добавить комментарий