Время переключения полевого транзистора. емкость затвор — сток, исток. включение, выключение. встроенный диод. fet, mosfet, моп

Выбор драйвера и их многообразие

IR2101, IR2010, IR2106, IR21064, IR2181, IR2110, IR2113VgsVgs=20ВVgsVgs

Большинство драйверов питаются напряжением 10-20В и поддерживают входные сигналы различных уровней -3.3В, 5В, 15В.

Существуют драйверы для трехфазных мостовых схем, например:
IR3230, IRS2334, IRS2334, IR21363, IR21364, IR21365, IR21368, IRS2336, IRS23364D, IRS2336D, IRS26310DJ, IR2130, IR2131, IR2132, IR2133, IR2135, IR2136, IRS2330, IRS2330D, IRS2332, IRS2332D, IR2233, IR2235, IR2238Q, IRS26302DJ.
Такие драйверы ключей могут стать самым подходящим вариантом. К тому же в некоторых трехфазных драйверах есть дополнительная возможность для обеспечения защиты ключей от слишком большого тока и т.п. Довольно интересная серия драйверов IRS233x (D). Она обеспечивает широкий спектр защит, в том числе защиту от негативных скачков напряжения, защита от короткого замыкания, от перегрузки, защита от снижения напряжения в шине, от снижения напряжения питания, защита от перекрестного включения.

Один из важнейших показателей драйверов — это максимальный выходной ток. Обычно от 200мА до 4000мА. Может показаться что 4 Ампера — это слишком. Но все решает калькулятор. Как отмечалось выше скорость переключения ключей — очень важная вещь. Чем мощнее драйвер, тем меньше времени тратится на переключение ключей. Примерно рассчитать время переключения ключей можно по формуле:

ton = Qg*(Rh+R+Rg)/U

Где:
Qg – полный заряд затвора полевого транзистора;
Rh – внутреннее сопротивление драйвера. Рассчитывается как U/Imax, где U — напряжение питания драйвера, Imax — максимальной выходной ток

Обратите внимание, что максимальной выходной ток может быть различным для верхнего и нижнего транзистора;
R – сопротивление резистора в цепи затвора;
Rg – внутреннее сопротивление затвора транзистор;
U – напряжение питания драйвера

Например, если мы используем транзистор irfp4468pbf и драйвер IR2101 с максимальным током 200мА. А в цепи затвора резистор 20 Ом, тогда время переключения транзистора:

540*(12/0.2 + 20 + 0.8)/12 = 3636 нС

Заменив драйвер на IR2010, с максимальным током — 3А, и резистором в цепи затвора — 2ом, получим такое время переключения:

540*(12/3+2+0.8)/12 = 306 нС

То есть, с новым драйвером время переключения сократился более чем в 10 раз. Так что и тепловые потери на транзисторах значительно уменьшатся.

Виды транзисторов

Существует несколько видов транзисторов. Их около четырёх. Однако основные из них это:

  • Полевые.
  • Биполярные.

Остальные виды собираются из полевых и биполярных. Рассмотрим более подробно каждый вид.

Полевые

Суть этого прибора заключается в управлении параметрами электрического сигнала с помощью электрического поля. Оно появляется при подаче напряжения к какому-либо из выводов:

  1. Затвор нужен для регулирования параметров сигнала, благодаря подаче напряжения на него.
  2. Сток — вывод, через который из канала уходят носители заряда (дырки и электроны).
  3. Исток — вывод, через который в канал приходят электроны и дырки.

Такой транзистор состоит из полупроводника с определённой проводимостью и двух областей, помещённых в него с противоположной проводимостью. При подаче напряжения на затвор между этими двумя областями появляется пространство, через которое протекает ток. Это пространство называется каналом. Ширина этого канала регулируется напряжением, которое мы подаём на затвор. Соответственно, можно увеличивать и уменьшать ширину канала и управлять протекающим током.

Теперь поговорим о приборе с изолированным затвором. Разница в том, что в первом случае этот переход есть всегда, даже когда на затвор не подавалось напряжение. А при его подаче, переход и токопроводящий канал менялись в зависимости от полярности и амплитуды напряжения. Металлический затвор в таких транзисторах изолирован диэлектриком от полупроводниковой области. Их входное сопротивление гораздо больше.

Существует два вида приборов с изолированным затвором:

  • Со встроенным каналом.
  • С индуцированным каналом.

Встроенный канал позволяет протекать электрическому току с определённой амплитудой. При подаче напряжения с определённой амплитудой и полярностью мы можем менять ширину канала и его проводимость. Этот канал встраивается в транзисторы на производственных предприятиях.

Индуцированный канал появляется между двумя областями, о которых мы говорили выше, только при подаче напряжения определённой полярности на затвор. То есть, когда на затвор напряжение не подаётся, ток в нем не протекает.

Все виды полевых транзисторов отличаются друг от друга по следующим параметрам:

  1. Входное сопротивление.
  2. Амплитуда напряжения, которое необходимо подать на затвор.
  3. Полярность.

Каждый из этих видов полевых транзисторов необходим для сборки определённых электрических и логических схем. Так как для реализации двух разных устройств необходимо разные электрические параметры.

Биполярные

Слово «биполярные» означает две полярности. То есть, такие приборы имеют две полярности, благодаря особенностям своего строения. Особенность их строения заключается в том, что они состоят из трёх полупроводниковых областей. Типы проводимости бывают следующими:

  1. Электронная, далее n.
  2. Дырочная, далее p.

Соответственно, можно сделать вывод, что существует два вида биполярных транзисторов:

  • pnp;
  • npn.

Разница между ними заключается в том, что для корректной работы необходимо подавать напряжение разной полярности. К каждой из трёх полупроводниковых областей подключено по одному выводу. Всего их три:

  1. База — центральный слой. Он является самым тонким. На выводе базы находится управляющий ток с небольшой амплитудой.
  2. Коллектор — один из крайних слоёв. Он является самым широким. На него подаётся ток с большой амплитудой.
  3. Эмиттер — вывод, на который подаётся ток с коллектора. На его выходе амплитуда тока немного больше, чем на входе.

Существует три схемы подключения биполярных транзисторов:

  1. С общим эмиттером — входной сигнал подаётся на базу, а выходной снимается с коллектора.
  2. С общим коллектором — входной сигнал подаётся на базу, а снимается с эмиттера.
  3. С общей базой — входной сигнал подаётся на эмиттер, а снимается с коллектора.

Благодаря нескольким электронно-дырочным переходам, образующимся в биполярном транзисторе, можно управлять параметрами электрического сигнала. Полярность и амплитуда подаваемого напряжения зависят от типа биполярного транзистора.

Особенности режима усиления

Увеличение положительного напряжения затвора вызовет появление сопротивления в канале. Это не покажет тестер транзисторов, он может только проверить целостность переходов. Чтобы уменьшить дальнейший рост, нужно увеличить тока стока. Другими словами, для режима усиления п-канального МОП-транзистора:

  1. Положительный сигнал транзистор переводит в проводящий режим.
  2. Отсутствие сигнала или же его отрицательное значение переводит в непроводящий режим транзистор. Следовательно, в режиме усиления МОП-транзистор эквивалентен «нормально разомкнутому» переключателю.

Обратные утверждения справедливы для режимов усиления р-канальных МОП-транзисторов. При нулевом напряжении устройство в режиме «Выкл» и канал открыт. Применение напряжения отрицательного значения к затвору р-типа у MOSFET увеличивает проводимость каналов, переводя его режим «Вкл». Проверить можно, используя тестер (цифровой или стрелочный). Тогда для режима усиления р-канального МОП-транзистора:

  1. Положительный сигнал переводит транзистор «Выкл».
  2. Отрицательный включает транзистор в режим «Вкл».

Транзистор полевой

При добавлении бора акцептор легированный кремний станет полупроводником с дырочной проводимостью p-Si , то есть в его структуре будут преобладать положительно заряженные ионы. Это главное отличие с точки зрения практики от биполярных транзисторов, которые управляются током.

На рисунке приведен полевой транзистор с каналом p-типа и затвором выполненным из областей n-типа. Опишем подробнее каждую модификацию.

Если изменить величину управляющего тока, то изменится интенсивность образования дырок на базе, что повлечёт за собой пропорциональное изменение амплитуды выходного напряжения, с сохранением частоты сигнала. Среди них можно выделить: биполярные транзисторы с внедрёнными и их схему резисторами; комбинации из двух триодов одинаковых или разных структур в одном корпусе; лямбда-диоды — сочетание двух полевых триодов, образующих участок с отрицательным сопротивлением; конструкции, в которых полевой триод с изолированным затвором управляет биполярным триодом применяются для управления электромоторами. С его ростом расширяются р-n- переходы, уменьшается площадь сечения токопроводящего канала, увеличивается его сопротивление, а, следовательно, уменьшается ток в канале.

Только вот стрелки на условном изображении полевых транзисторов имеют направление, прямо противоположное своим биполярным аналогам. Устройство полевого транзистора с управляющим p-n переходом Приведено на рис.

См. также: Подключить электричество к участку

Другие популярные статьи

Транзисторы бывают в разных корпусах, с разным количеством выводов, часто в одном корпусе объединяют два транзистора. Транзистор имеет три вывода: исток, сток, затвор. Vgs — управляющее напряжение, Vg-Vs.

Этот принцип используют для усиления сигналов. На конкретной схеме это p-канальный прибор затвор — это n-слой, имеет меньше удельное сопротивление, чем область канала p-слой , а область p-n-перехода в большей степени расположена в p-области по этой причине.

Похожие публикации

Типы полевых транзисторов и их схематическое обозначение. В результате возникают некомпенсированные заряды: в области n-типа — из отрицательных ионов, а в области p-типа из положительных. Схема с общим истоком Истоком называют электрод, через который в канал поступают носители основного заряда. С общим стоком в. МДП — транзисторы выполняют двух типов — со встроенным каналом и с индуцированным каналом.

Электронно-дырочный p-n-переход в таких полевых транзисторах получил название управляющего, поскольку напрямую изменяет мощность потока носителей заряда, представляя собой физическое препятствие для электронов или дырок в зависимости от типа проводимости основного кристалла. И даже наоборот, его наличие специально используется в некоторых схематических решениях. Полевые транзисторы очень распространены как в старой схемотехнике, так и в современной.
Схемы включения полевых транзисторов

Схемы включения полевых транзисторовСхемы включения полевых транзисторов

Резервирование источников питания

Резервирование источников питания применяется для повышения надежности электропитания жизненно важного и ответственного оборудования: медицинской аппаратуры, серверов, узлов связи, диспетчерских центров и т.п. Для резервирования используются различные схемы соединения источников питания: N+1, 2N, 2N+1

Первый вариант (N+1) используется в модульных ИБП, где резервируется только часть сети питания. Схема резервирования 2N самая надежная, но дорогая. В ней резервируются все источники питания. Для особенно важных приложений используется комбинированная схема резервирования – 2N+1. В таких системах используется горячее резервирование, причем замена резервных блоков производится в режиме «горячей замены» (hotswap) без выключения питания. Для построения надежных систем резервирования питания требуется обеспечить несколько функций: параллельное включение альтернативных источников питания с развязкой, защиту от перегрузок как в процессе работы, так и при горячей смене блоков питания в системе.

Для подключения нагрузки к нескольким источникам питания одновременно с возможностью работы только от одного из них используют технологию ORing.

ORing – это монтажное «ИЛИ» нескольких источников питания для альтернативного питания нагрузки (устройства). По сути это многоканальный коммутатор силовой шины питания, обеспечивающий развязку между источниками питания, малые потери при прохождении тока, безопасное подключение\отключение любого из источников и самой нагрузки. Такая функция используется в источниках бесперебойного питания, устройствах повышенной надежности с резервными источником питания, а также в приборах с автономным (батарейным) питанием, которые периодически подключаются к внешнему ИП.

Обычно для этой функции используются диоды, но им присущи большие потери и отсутствие дополнительных функций мониторинга. При необходимости отключения в случае перегрузки дополнительно потребуется схема измерения тока. На рисунке 6 представлена зависимость мощности потерь от протекающего тока для диодов и полевых транзисторов.

На рисунке 7 показана система питания с горячим резервированием. Два источника питания подключены к нагрузке через развязывающие диоды.

Рис. 6. Зависимость потерь от протекающего тока для диодов и FET-транзисторов

Рис. 7. Простейший вариант питания с горячим резервированием

Ток в штатном режиме протекает по цепям обоих источников. При отказе одного питание нагрузки осуществляется от второго источника.

На рисунке 8 показана простейшая схема коммутации цепей питания мобильного устройства от одного из трех источников питания: сетевого адаптера с выходным напряжением 5.05 В, шины питания USB-порта с напряжением 4.95 В или от трех элементов питания с напряжением 4.5 В. Развязка источников с помощью диодов Шоттки позволяет обеспечить режим приоритетного питания от одного из источников с большим напряжением. Например, при одновременном подключении ко всем трем источникам питания основной ток будет проходить из цепи сетевого адаптера. Ток от батареи в этом случае будет незначительным (всего 50 нА).

Рис. 8. Реализация монтажного «ИЛИ» трех ИП для питания портативного USB-устройства

Однако схема коммутации с исползьованием диодов обладает определенными недостатками:

  • при больших токах на диодах будет теряться значительная мощность
  • напряжение питания будет зависеть от величины падения напряжения на диодах
  • диоды не обеспечивают защиту от высоких пусковых (inrush) токов при подключении к нагрузке.

Применение полевых транзисторов с низким сопротивлением открытого ключа вместо диодов позволяет значительно сократить потери в цепях коммутации. Управление ключами в этом случае должно производиться схемой контроллера коммутации, которая сможет обеспечить безопасные режимы подключения и отключения источников. Кроме того, в этой схеме можно реализовать цепи защиты как от короткого замыкания, так и от пренапряжения/недонапряжения. Через ключи можно обеспечить плавный пусковой ток. При обнаружении опасных событий ключами производится отключение нагрузки. На рисунке 9 показана схема коммутации источников питания (сетевого адаптера или аккумуляторной батареи) посредством ключей полевых транзисторов.

Рис. 9. Монтажное «ИЛИ» двух источников питания через ключи полевых транзисторов

Монтажное «ИЛИ» источников через коммутаторы ORing обеспечивает десятикратное уменьшение потерь энергии на коммутации по сравнению с реализацией функции OR на диодах Шоттки.

Полевые транзисторы с изолированным затвором. Устройство и принцип действия

Полевой транзистор с изолированным затвором (МДП-транзистор, MOSFET) – это полевой транзистор, затвор которого отделен в электрическом отношении от канала слоем диэлектрика. МДП-транзисторы (структура: металл-диэлектрик-полупроводник) выполняют из кремния. В качестве диэлектрика используют окисел кремния SiO2. отсюда другое название этих транзисторов – МОП – транзисторы (структура: металл-окисел-полупроводник). Наличие диэлектрика обеспечивает высокое входное сопротивление рассматриваемых транзисторов (1012 … 1014Ом).

Полевые транзисторы – это однополярные устройства, как и обычные полевые транзисторы. То есть управляемый ток не должен проходить через PN переход. В транзисторе имеется PN переход, но его единственное назначение – обеспечить непроводящую обедненную область, которая используется для ограничения тока через канал.

Принцип действия МДП-транзисторов основан на эффекте изменения проводимости приповерхностного слоя полупроводника на границе с диэлектриком под воздействием поперечного электрического поля. Приповерхностный слой полупроводника является токопроводящим каналом этих транзисторов. МДП-транзисторы выполняют двух типов – со встроенным и с индуцированным каналом.

Полевые транзисторы разных размеров

Рассмотрим особенности МДП-транзисторов со встроенным каналом. Конструкция такого транзистора с каналом n-типа показана на рис. 4, а. В исходной пластинке кремния р- типа с относительно высоким удельным сопротивлением, которую называют подложкой, с помощью диффузионной технологии созданы две сильнолегированные области с противоположным типом электропроводности – n. На эти области нанесены металлические электроды – исток и сток. Между истоком и стоком имеется тонкий приповерхностный канал с электропроводностью n- типа. Поверхность кристалла полупроводника между истоком и стоком покрыта тонким слоем (порядка 0,1 мкм) диэлектрика. На слой диэлектрика нанесен металлический электрод – затвор. Наличие слоя диэлектрика позволяет в таком полевом транзисторе подавать на затвор управляющее напряжение обеих полярностей.

Основные характеристики полевых транзисторов.

Основные параметры полевых транзисторов:

  1. Максимально допустимая постоянная рассеиваемая мощность;
  2. Максимально допустимая рабочая частота;
  3. Напряжение сток-исток;
  4. Напряжение затвор-сток;
  5. Напряжение затвор-исток;
  6. Максимально допустимый ток стока;
  7. Ток утечки затвора;
  8. Крутизна характеристики;
  9. Начальный ток стока;
  10. Емкость затвор-исток;
  11. Входная ёмкость;
  12. Выходная ёмкость;
  13. Проходная ёмкость;
  14. Выходная мощность;
  15. Коэффициент шума;
  16. Коэффициент усиления по мощности.

Полевые транзисторы разных размеров

Что это такое

Полевой транзистор — это радиоэлемент полупроводникового типа. Он используется для усиления электросигнала. В любом цифровом приборе схема с полевым транзистором исполняет роль ключа, который управляет переключением логических элементов прибора. В этом случае использование ПТ является очень выгодным решением проблемы с точки зрения уменьшения размеров устройства и платы. Обусловлено это тем, что цепь управления радиокомпонентами требует не очень большой мощности, а значит, что на одном кристалле могут располагаться тысячи и десятки тысяч транзисторов.


Схема подключения электротранзистора полевого типа

Материалами, из которых делают полупроводниковые элементы и транзисторы в том числе, являются:

  • Фосфид индия;
  • Нитрид галлия;
  • Арсенид галлия;
  • Карбид кремния.

График области насыщения электротранзистораВажно! Полевые транзисторы также называют униполярными, так как при протекания через них электротока используется только один вид носителей

Как проверить полевой транзистор?

В норме сопротивление между любыми выводами ПТ бесконечно велико.

И, если тестер показывает какое-то небольшое сопротивление, то ПТ, скорее всего, пробит и подлежит замене.

Во многих ПТ имеется встроенный диод между стоком и истоком для защиты канала от обратного напряжения (напряжения обратной полярности).

Таким образом, если поставить «+» тестера (красный щуп, соединенный с «красным» входом тестера) на исток, а «-» (черный щуп, соединенный с черным входом тестера) на сток, то канал будет «звониться», как обычный диод в прямом направлении.

Это справедливо для ПТ с n-каналом. Для ПТ с p-каналом полярность щупов будет обратной.

Как проверить диод с помощью цифрового тестера, описано в соответствующей статье. Т.е. на участке «сток — исток» будет падать напряжение 500-600 мВ.

Если поменять полярность щупов, к диоду будет приложено обратное напряжение, он будет закрыт и тестер это зафиксирует.

Однако исправность защитного диода еще не говорит об исправности транзистора в целом. Более того, если «прозванивать» ПТ, не выпаивая из схемы, то из-за параллельно подключенных цепей не всегда можно сделать однозначный вывод даже об исправности защитного диода.

В таких случаях можно выпаять транзистор, и, используя небольшую схему для тестирования, однозначно ответить на вопрос – исправен ли ПТ или нет.

В исходном состоянии кнопка S1 разомкнута, напряжение на затворе относительно стока равно нулю. ПТ закрыт, и светодиод HL1 не светится.

При замыкании кнопки на резисторе R3 появляется падение напряжения (около 4 В), приложенное между истоком и затвором. ПТ открывается, и светодиод HL1 светится.

Эту схему можно собрать в виде модуля с разъемом для ПТ. Транзисторы в корпусе D2 pack (который предназначен для монтажа на печатную плату) в разъем не вставишь, но можно припаять к его электродам проводники, и уже их вставить в разъем. Для проверки ПТ с p-каналом полярность питания и светодиода нужно изменить на обратную.

Иногда полупроводниковые приборы выходят из строя бурно, с пиротехническими, дымовыми и световыми эффектами.

В этом случае на корпусе образуются дыры, он трескается или разлетается на куски. И можно сделать однозначный вывод об их неисправности, не прибегая к приборам.

В заключение скажем, что буквы MOS в аббревиатуре MOSFET расшифровываются как Metal — Oxide — Semiconductor (металл – оксид – полупроводник). Такова структура ПТ – металлический затвор («кран») отделен от канала из полупроводника слоем диэлектрика (оксида кремния).

Надеюсь, с «трубами», «кранами» и прочей «сантехникой» вы сегодня разобрались.

Однако, теория, как известно, без практики мертва! Надо обязательно поэкспериментировать с полевиками, поковыряться, повозиться с их проверкой, пощупать, так сказать.

Оцените статью
Рейтинг автора
5
Материал подготовил
Илья Коршунов
Наш эксперт
Написано статей
134
Добавить комментарий