Операционные усилители с однополярным питанием: примеры применения

Принцип действия магнитного усилителя

Вспомним формулу:

Вашему вниманию подборка материалов:

Практика проектирования электронных схем Искусство разработки устройств. Элементная база. Типовые схемы. Примеры готовых устройств. Подробные описания. Онлайн расчет. Возможность задать вопрос авторам

[Индуктивность, Гн] = 1.257E-9 * [Магнитная проницаемость сердечника] * [Площадь сечения магнитопровода, кв. мм] * [количество витков]^2 / [Длина средней магнитной линии сердечника, мм]

Принцип действия магнитного усилителя основан на интересном свойстве ферромагнитных материалов. Этим материалам свойственно насыщение. Это означает, что в ненамагниченном состоянии магнитная проницаемость может быть несколько тысяч или несколько десятков тысяч (для трансформаторного железа). При такой высокой магнитной проницаемости индуктивность катушки, намотанной на сердечнике, будет большой. Большим будет и модуль сопротивления переменному току. Путь переменному току будет практически перекрыт. Магнитный усилитель закрыт.

Но все меняется, если достаточно сильно (до насыщения) намагнитить сердечник. При этом его магнитная проницаемость приблизится к единице. Индуктивность, а значит модуль сопротивления, уменьшится в тысячи или десятки тысяч раз. Магнитный усилитель откроется.

Рисунок иллюстрирует описанный процесс. Магнитная индукция, характеризующая интенсивность магнитного поля, отложена по вертикальной оси. Сначала она быстро нарастает при небольшом росте электрического тока. Потом происходит перелом графика. Индукция уже растет намного медленнее по отношению к силе тока. Когда магнитный усилитель закрыт, сила тока располагается между точками 1 — 2. Сила тока через открытый магнитный усилитель находится между точками 3 — 4.

На этом рисунке мы видим график тока через магнитный усилитель в его разных режимах. A1 — усилитель открыт. A2 — усилитель закрыт. A3 — промежуточное состояние. Мы видим, что в открытом или закрытом состоянии магнитный усилитель практически не искажает сигнал. Но вот в промежуточном состоянии искажения очень существенные. Кроме того в промежуточном состоянии достаточно высоки потери на перемагничивание сердечника. В таком режиме магнитный усилитель используется только, если нагрузка не чувствительна к искажению формы сигнала или происходит последующая фильтрация. Замечу, что искажения, вносимые магнитным усилителем, довольно безобидные. В выходном сигнале нет высших гармоник.

Что такое усилитель?

В электрических схемах очень часто встречаются сигналы малой мощности. Например, это может быть звуковой сигнал с динамического микрофона

слабый радиосигнал, который ловит из эфира ваш китайский радиоприемник

Либо отраженный сигнал от ракеты противника, который уже потом ловит, усиливает и отслеживает радиолокационная установка. Для примера: зенитно-ракетный комплекс ТОР:

Как вы видите, в электронике абсолютно везде требуется усиление слабых сигналов. Для того, чтобы их усиливать, как раз нужны усилители сигналов. Усилители широко применяются в радиолокации, телевидении, радиовещании, телеметрии, в вычислительной технике, авторегулировании, в системах автоматики и тд.

Металлосвязь кабельных лотков

Хотя лотки соединяются между собой с помощью болтов, благодаря чему имеют непрерывное соединение конструкции и некоторую проводимость электрического тока, их необходимо соединять дополнительными перемычками. Ведь согласно ГОСТ 10434.82 трассу можно считать заземленной только при применении перемычек.

Также необходимо знать, какое сечение провода следует использовать для того, чтобы заземлить лоток для прокладки кабеля. Если используются перемычки как проводники, то они должны иметь сечение от 4 до 6 мм², а изоляция должна иметь правильную цветовую маркировку, которая состоит с желтого и зеленого цвета.

Если самостоятельно изготавливать такие перемычки, то можно применять гибкий многожильный провод марки ПВ-3. Однако следует помнить, что такой провод должен иметь наконечник, в основном его устанавливают с помощью опрессовки.

Также следует учесть, что болты соединения защитных проводников не могут использоваться в иных целях, например, для соединения боковых частей лотков, или крепления к опорам. Некоторые производители в комплект к лоткам ставят специальные шайбы, которые имеют зубцы. Такие шайбы обеспечивают повышенную надежность контакта, а также отсекают вероятность ослабления зажимных гаек или специальных шин.

Отношение сигнал/шум

Пусть у вас дома стоит телевизор, который ловит аналоговое вещание. На экране телевизора мы видим четкую картинку:

Но вдруг антенна на крыше вашего дома из-за сильного ветра чуток отклонилась в сторону и изображение ухудшилось

Потом антенна вообще упала с крыши, и на телевизоре мы видим теперь что-то типа этого

В каком случае отношение сигнал/шум будет больше, а в каком меньше? На первой картинке, где четкое изображение, отношение сигнала к шуму будет очень большое, так как не первой картинке мы простым взглядом не можем уловить каких-либо помех на изображении, хотя по идее они есть).

На второй картинке мы видим, что в изображении появились помехи, которые делают некомфортным просмотр картинки. Здесь отношение сигнала к шуму  уже будет намного меньше, чем на первой картинке.

Ну и на третьей картинке шумы почти полностью одолели изображение. В этом случае можно сказать , что отношение сигнала к шуму будет ну очень малым.

Отношение сигнал/шум является количественной безразмерной величиной.

В аналоговой электронике для нормальной работы усилителя полезный сигнал должен в несколько раз превышать шумы, иначе это сильно скажется на качестве усиления, так как полезный сигнал суммируется с шумовым.

Отношение сигнал/шум в англоязычной литературе обозначается как SNR или S/N.

Так как порой это отношение достигает очень больших значений в цифрах, поэтому чаще всего его выражают в децибелах:

где

Ucигнал –  среднеквадратичное значение полезного сигнала, В

Uшум  – среднеквадратичное значение шумового сигнала, В

Pсигнал  – мощность сигнала

Pшум  – мощность шума

То есть в нашем случае с котиком на первой картинке амплитуда  полезного видеосигнала в разы превосходила амплитуду шума, поэтому первая картинка была четкой. На третьей картинке амплитуда полезного видеосигнала почти была равна амплитуде шума, поэтому картинка получилась очень зашумленной.

Еще один пример. Вот синусоидальный сигнал с SNR=10:

А вот тот же самый синус с SNR=3

Как вы могли заметить, сигнал с SNR=10 намного “чище”, чем с SNR=3.

SNR чаще всего можно увидеть при описании характеристик усилителя звука. Чем выше SNR, тем лучше по качеству звучания будет усилитель. Для HI-FI систем звучания этот показатель должен быть от 90 дБ и выше.  Для телефонных разговоров вполне достаточно и 30 дБ.

На практике SNR измеряется на выходе усилителя с помощью милливольтметра с trueRMS, либо с помощью анализатора спектра.

Простейшие схемы с обратной связью

Из рассмотрения принципа работы идеального ОУ следует очень простая методика проектирования схем:

Таким образом, требуемое состояние системы будет устойчивым состоянием равновесия, и система будет в нем находиться неограниченно долго. Пользуясь этим упрощённым подходом, несложно получить простейшую схему неинвертирующего усилителя.

От усилителя требуется наличие на выходе напряжения, отличающегося от входного в K{\displaystyle K} раз, то есть Uout=Uin⋅K{\displaystyle U_{out}=U_{in}\cdot K}. В соответствии с приведённой выше методикой подадим на неинвертирующий вход ОУ сам входной сигнал, а на инвертирующий — часть выходного сигнала с резистивного делителя.

Неинвертирующий усилитель

Расчёт реального коэффициента усиления для идеального (или реального, но который можно с определёнными допущениями считать идеальным) усилителя очень прост. Заметим, что в том случае, когда усилитель находится в состоянии равновесия, напряжения на его входах можно считать одинаковыми. Исходя из этого следует, что падение напряжения на резисторе R1{\displaystyle R_{1}} равно Vin{\displaystyle V_{in}}, а на всём делителе сопротивлением R1+R2{\displaystyle R_{1}+R_{2}}, падает Vout{\displaystyle V_{out}}. Заметим, что, поскольку входное сопротивление операционного усилителя очень велико, то током, поступающим на инвертирующий (−) вход усилителя можно пренебречь, и ток, протекающий через резисторы делителя, можно принять одинаковым. Ток через R1{\displaystyle R_{1}} равен IR1=VinR1{\displaystyle I_{R_{1}}={\frac {V_{in}}{R_{1}}}}, а через весь делитель IR1+R2=VoutR1+R2{\displaystyle I_{R_{1}+R_{2}}={\frac {V_{out}}{R_{1}+R_{2}}}}.

Таким образом:

IR1=IR1+R2{\displaystyle I_{R_{1}}=I_{R_{1}+R_{2}}}

Откуда:

VinR1=VoutR1+R2{\displaystyle {\frac {V_{in}}{R_{1}}}={\frac {V_{out}}{R_{1}+R_{2}}}}

Vout=Vin⋅R1+R2R1=Vin⋅(1+R2R1){\displaystyle V_{out}=V_{in}\cdot {\frac {R_{1}+R_{2}}{R_{1}}}=V_{in}\cdot \left(1+{\frac {R_{2}}{R_{1}}}\right)}

Можно рассуждать немного проще, сразу заметив, что VoutVin=R1+R2R1{\displaystyle {\frac {V_{out}}{V_{in}}}={\frac {R_{1}+R_{2}}{R_{1}}}}.

Следует обратить внимание, что в неинвертирующей схеме включения коэффициент усиления напряжения всегда больше или равен 1, вне зависимости от номиналов используемых резисторов. Если сопротивление R2{\displaystyle R_{2}} равно нулю, то мы получаем неинвертирующий повторитель напряжения имеющий коэффициент усиления напряжения 1.. А поскольку:

А поскольку:

∀n∈R+limn→∞n={\displaystyle \forall n\in \mathbb {R} ^{+}\lim _{n\to \infty }{\frac {0}{n}}=0},

то сопротивление R1{\displaystyle R_{1}} можно попросту убрать, приняв его равным бесконечности.

Таким образом, коэффициент передачи усилителя, построенного на ОУ с достаточно большим усилением, практически зависит только от параметров обратной связи. Это полезное свойство позволяет проектировать системы с очень стабильным коэффициентом передачи, необходимые, например, при измерениях и обработке сигналов.

Инвертирующий усилитель

Для операционного усилителя, включенного по инвертирующей схеме, расчёт при принятых допущениях тоже не представляет сложности. Для этого следует заметить, что напряжение в средней точке делителя, а именно на инвертирующем входе (−) усилителя равно 0 (так называемая виртуальная земля). Отсюда падения напряжения на резисторах равны, соответственно, входному и выходному напряжениям. Ток через резисторы тоже можно принять одинаковым, поскольку через инвертирующий вход (−) ток практически отсутствует, как было указано выше.

Отсюда:

VinRin=−VoutRf{\displaystyle {\frac {V_{in}}{R_{in}}}=-{\frac {V_{out}}{R_{f}}}}

Vout=−Vin⋅RfRin{\displaystyle V_{out}=-V_{in}\cdot {\frac {R_{f}}{R_{in}}}}

Следует обратить внимание, что в инвертирующей схеме включения коэффициент усиления может быть как больше, так и меньше единицы и зависит от номиналов резисторов делителя. То есть усилитель может использоваться как активный аттенюатор (ослабитель) входного напряжения

Преимуществом этого решения над пассивным аттенюатором заключается в том, что с точки зрения источника сигнала аттенюатор выглядит как обычный резистор нагрузки, подключенный между сигналом и землёй (в данном случае так называемой «виртуальной»), то есть является обычной активной нагрузкой (разумеется, без учёта паразитных ёмкостей и индуктивностей). Это значительно упрощает расчёт влияния нагрузки на источник сигнала и их взаимное согласование.

Версия с однополярным источником питания

Следующая схема адаптирует схему мостового усилителя к использованию однополярного источника питания:

Рисунок 3 – Мостовой усилитель с однополярным питанием

Важная особенность схемы на операционном усилителе с однополярным источником питания – это напряжение смещения, которое задает опорный уровень, равный половине напряжения питания (так же, как потенциал земли служит в качестве опорного уровня среднего напряжения питания в системах с двойным источником питания). Напряжение смещения не обязательно должно быть равно половине напряжения питания, но оно обычно выбирается таким при работе с синусоидальными сигналами, поскольку смещение, равное половине напряжения питания гарантирует, что выходной сигнал имеет одинаковые возможности раскачиваться и в «положительную», и в «отрицательную» стороны («положительная» значит выше напряжения смещения, а «отрицательная» значит ниже напряжения смещения).

Существуют различные способы смещения в схемах на операционном усилителе с однополярным источником питания. На мой взгляд, самый простой подход показан на схеме, приведенной выше: вы конфигурируете схему как инвертирующий усилитель и прикладываете Vсмещ к положительному входу. Вот почему мостовой усилитель с однополярным источником питания использует два инвертирующих усилителя, тогда как стандартный мостовой усилитель использует неинвертирующий усилитель и инвертирующий усилитель.

Смещение неинвертирующего усилителя неудобно – независимо от того, применяете ли вы смещение к положительному или отрицательному входу, взаимосвязь между напряжением смещения и выходным напряжением является более сложной по сравнению с инвертирующей схемой. Кроме того, если для формирования напряжения смещения вы используете резистивный делитель, резисторы в неинвертирующем усилителе взаимодействуют с резисторами в делителе и тем самым делают вашу жизнь еще более сложной, чем она уже есть. Инвертирующая схема позволяет подключать напряжение смещения непосредственно к высокоимпедансному входному выводу операционного усилителя, и, таким образом, вы можете использовать резистивный делитель без опасений:

Рисунок 4 – Организация смещения в мостовой схеме с однополярным питанием

Наконец, вы, вероятно, заметили, что на вход одного из операционных усилителей подается не сам входной сигнал, а выходной сигнал другого операционного усилителя. Весь смысл мостового усилителя состоит в том, чтобы генерировать как инвертированный, так и неинвертированный выходной сигнал, и, таким образом, каскадное включение усилителей является простым решением проблемы наличия двух инвертирующих усилителей.

Зачем управлять питанием?

Операционные усилители предлагают простую и эффективную альтернативу конструкциям с дискретными транзисторами и доказали свою полезность в различных областях применения. Однако в некоторых случаях требуется больший размах выходного напряжения, чем тот, которые может выдавать стандартный монолитный операционный усилитель.

Наиболее прямолинейный подход к получению большого размаха выходного напряжения заключается в разработке усилителя с использованием дискретных транзисторов. Такой подход позволяет гибко подстраивать усилитель под задачу. С помощью этого метода можно также легко получить высокую выходную мощность. Однако конструкции с дискретными транзисторами требуют больше времени и усилий разработчика, чем другие подходы, и требуют больше деталей, усложняя производство. Также в таких конструкциях трудно достичь точности из-за разброса параметров деталей и разности температур.

Высоковольтные модули операционных усилителей предоставляют альтернативу, которая значительно облегчает задачу дизайнера. Эти устройства так же просты в использовании, как и монолитные операционные усилители, но обычно выполнены в форме гибридных модулей, что позволяет работать с высоким напряжением (и часто с высокой мощностью). Одно из важных преимуществ этих модулей по сравнению с дискретными конструкциями заключается в том, что они имеют параметры, контролируемые заводом, облегчая задачу дизайнера в получении требуемых параметров. Наиболее существенным недостатком гибридных модулей является их стоимость. Кроме того, монолитных операционных усилителей гораздо больше, чем гибридных операционных усилителей. Гибрид часто не может удовлетворить требованиям параметров дизайна. В таком случае методы следящего питания делают доступными много сотен доступных устройств.

Схемы со следящим питанием требуют больше усилий, но значительно дешевле, чем модули высоковольтных операционных усилителей. С помощью полностью дискретного дизайна можно ещё больше снизить стоимость, но дополнительные усилия по проектированию и контролю параметров, которые приходится предпринимать, часто сводят снижение стоимости на нет. Доступно множество монолитных операционных усилителей и на параметры каждого из них, полностью контролируемых заводом, можно положиться даже когда операционный усилитель окружает схема следящего питания. Расширение диапазона напряжений стандартных операционных усилителей с помощью следящего питания предоставляет гибкость и сохраняет набор параметров «неизменным».

При разработке любой конструкции высоковольтного усилителя следует рассмотреть все три метода. В этой статье подробно рассматривается следящее питание, наименее документированный метод из этих трёх (Таблица 1).

Таблица 1. Методы создания высоковольтного усилителя.

Цена

Усилия по разработке

Количество деталей

Получение требуемых параметров

Выходная мощность

Выбор

Высоковольтные модули ОУ

Большая

Небольшие

Мало

Просто

Средняя

Мал

Следящее питание ОУ

Небольшая

Умеренные

Умерено

Просто

Небольшая

Большой

ОУ на дискретных транзисторах

Малая

Большие

Много

Сложно

Большая

Большой

Дрейф нуля УПТ

Особенностью многокаскадных УПТ, не использующих модулятор на входе и демодулятор на выходе — это УПТ типа М-ДМ, является непосредственная связь между каскадами, то есть между каскадами не включаются разделительные конденсаторы или трансформаторы, не пропускающие сигналы с низкими частотами, в частности, сигналы постоянного тока. Для таких УПТ характерен «дрейф нуля» — медленное систематическое или медленное хаотическое изменение выходного сигнала при неизменном входном сигнале.

Количественно дрейф нуля принято выражать приведённым ко входу усилителя, то есть дрейфу выходного сигнала делённому на коэффициент усиления усилителя. Часто указывается дрейф от влияющего фактора, например, от температуры, в этом случае приведённый ко входу дрейф относят к единице измерения влияющего фактора, например, мкВ/К (температурный дрейф), мкВ/сутки (временной дрейф) и т. д.

Дрейф нуля принципиально неустраним в УПТ с непосредственными связями, разными мерами можно только его уменьшить. Причинами, вызывающими дрейф нуля являются:

  • Изменения температуры (температурный дрейф) и влажности окружающей среды.
  • Нестабильности источников питания.
  • Старение электронных компонентов, вызывающее изменение их электрических параметров.
  • Низкочастотные собственные шумы усилителя.

Для снижения дрейфа нуля стремятся исключить влияние внешних факторов — герметизацией, термостатированием, использования стабильного питания, применения искусственно состаренных компонентов и др. Наиболее весомый вклад в дрейф обычно температурный.

Основной вклад в дрейф нуля вносит входной каскад, вклад последующих каскадов в дрейф нуля обычно мал. Для снижения дрейфа входного каскада часто применяют дифференциальные (балансные) входные каскады. Дифференциальное включение активных компонентов позволяет существенно снизить влияние температуры и других влияющих на дрейф факторов, так как при равенстве величины и знака изменения параметров активных компонентов в дифференциальной схеме уход параметров взаимно компенсируется, так как влияют на выходной сигнал с разными знаками и в идеале — равными по модулю.

Температурный дрейф современных прецизионных УПТ с непосредственными связями, например прецизионных операционных усилителей порядка единиц — десятков мкВ/К.

Очень эффективный способ борьбы с дрейфом нуля является применение УПТ построенных по схеме модулятор — усилитель переменного сигнала — демодулятор сокращенно называемые УПТ типа МДМ или М-ДМ.

Осуществляем антикоррозийную обработку своими руками

1. Средства для защиты труднодоступных внутренних поверхностей

  1. Невысыхающий антикор. Этот препарат действительно никогда не засыхает. Пребывая все время в жидком состоянии, он вовремя заполняет собой разного рода микротрещины на металлической поверхности, предупреждая таким образом появление коррозии.
  2. Антикоррозийные парафиновые смеси, изготовленные на восковой основе. Обработка такой смесью оставляет на поверхности эластичную парафиновую пленку, препятствующую попаданию сырости и последующему окислению. Пленка сохраняет свои свойства даже при большом перепаде температур.

2. Препараты для защиты внешних поверхностей

  1. Битумная мастика, состоящая из синтетических масел и битума непосредственно. Это средство осуществляет двойной заслон: от коррозии и от ударов дорожного мусора – песка, веток, камней и т.д. Толщина нанесенного слоя мастики определяется от 0,25 до 0,4 мм.
  2. Мастика ПВХ на основе каучука. Это довольно высокопрочное покрытие, которое к тому же известно своей долговечностью. Используется она в основном на производстве, потому что требует применения специальных технологий.
  3. Жидкий пластик. Устойчивость к механическим повреждениям у него низкая, поэтому это средство можно использовать как дополнительный слой, имеющий в основном косметическое значение.

Справка:

Питание операционных усилителей

Если выводы питания не указаны, то считается, что на ОУ идет двухполярное питание +E и -E Вольт. Его также помечают как  +U и -U, VCC и VEE, Vc и VE. Чаще всего это +15 и -15 Вольт. Двухполярное питание также называют биполярным питанием. Как это понять – двухполярное питание?

Давайте представим себе батарейку

Думаю, все вы в курсе, что у батарейки есть “плюс” и есть “минус”.  В этом случае “минус” батарейки принимают за ноль,  и уже относительно нуля считают напряжение батарейки. В нашем случае напряжение батарейки равняется 1,5 Вольт.

А давайте возьмем еще одну такую батарейку и соединим их последовательно:

Итак, общее напряжение у нас будет 3 Вольта, если брать за ноль минус первой батарейки.

А что если взять на ноль минус второй батарейки и относительно него уже замерять все напряжения?

Вот здесь мы как раз и получили двухполярное питание.

Инвертирующий усилитель на ОУ. Принцип работы

Инвертирующий усилитель является одним из самых простых и наиболее часто используемых аналоговых схем. С помощью всего двух резисторов, мы можем выставить необходимый нам коэффициент усиления. Ничего не мешает нам сделать коэффициент менее 1, тем самым ослабив входной сигнал.

Часто к схеме добавляют еще один резистор R3, сопротивление которого равно сумме R1 и R2.

Чтобы понять, как работает инвертирующий усилитель, смоделируем простую схему. У нас на входе напряжение 4В, сопротивление резисторов составляет R1=1к и R2=2к. Можно было бы, конечно, подставить все это в формулу и сразу вычислить результат, но давайте посмотрим, как именно работает эта схема.

Начнем с напоминания основных принципов работы операционного усилителя:

Обратите внимание, что неинвертирующий вход (+) соединен с массой, то есть на нем напряжение равное 0В. В соответствии с правилом №1 на инвертирующем входе (-) так же должно быть 0В

Итак, мы знаем напряжение, находящееся на выводах резистора R1 и его сопротивление 1к. Таким образом, с помощью закона Ома мы можем выполнить расчет, и рассчитать, какой ток течет через резистор R1:

Чтобы знать, куда дальше течет этот ток, мы должны знать еще принцип действия усилителя:

Таким образом, ток, протекающий через R1, течет далее через R2!

Снова воспользуемся законом Ома и вычислим, какое падение напряжения происходит на резисторе R2. Мы знаем его сопротивление и знаем какой ток через него, следовательно:

Получается, что на выходе мы имеем 8В? Не совсем так. Напомню, что это инвертирующий усилитель, т. е. если на вход мы подаем положительное напряжение, а на выходе снимаем отрицательное. Как же это происходит?

Это происходит вследствие того, что обратная связь установлена на инвертирующем входе (-), и для уравнивания напряжений на входе усилитель снижает потенциал на выходе. Соединения резисторов можно рассмотреть как простой делитель напряжения, поэтому чтобы потенциал в точке их соединения был равен нулю, на выходе должно быть минус 8 вольт: Uвых. = -(R2/R1)*Uвх.

Есть еще один подвох, связанный с 3 правилом:

То есть нужно проверить, что рассчитанные нами напряжения можно реально получить через усилитель. Часто начинающие думают, что усилитель работает как источник свободной энергии и вырабатывает напряжение из ничего. Но надо помнить, что для работы усилителя также нужно питание. Классические усилители работают от напряжения -15В и +15В. В такой ситуации наши -8В, которые мы рассчитали, являются реальным напряжением, так как находится в этом диапазоне.

Однако современные усилители часто работают с напряжением 5В и ниже. В такой ситуации нет никаких шансов, чтобы усилитель выдал нам минус 8В на выходе. Поэтому, при проектировании схем всегда помните, что теоретические расчеты всегда нужно подкреплять реальностью и физическими возможностями.

Необходимо отметить, что инвертирующий усилитель имеет один недостаток. Мы уже знаем, что повторитель напряжения не нагружает источник сигнала, поскольку входы усилителя имеют очень большое сопротивление, и потребляют ток так мало, что в большинстве случаев его можно игнорировать (правило №2).

Инвертирующий же усилитель имеет входное сопротивление равное сопротивлению резистора R1, на практике оно составляет от 1к…1М. Для сравнения, усилитель с входами на полевых транзисторах имеет сопротивление порядка сотен мегаом и даже гигаом! Поэтому иногда может быть целесообразно перед усилителем установить повторитель напряжения.

Читайте далее:

Принцип действия операционного усилителя

Генератор тока на операционном усилителе

Принцип работы усилителя звука

Биполярный транзистор принцип работы для чайников

Полевой транзистор принцип работы для чайников

Оцените статью
Рейтинг автора
5
Материал подготовил
Илья Коршунов
Наш эксперт
Написано статей
134
Добавить комментарий