О заводе >> публикации >> оао «юаиз»: новые изоляторы для энергетической отрасли , «энергетика и промышленность россии» №12-2005 (перепечатка в электро-инфо № 12-2005, «новости электротехники» №5(35)-

Обозначения изоляторов

В маркировке каждого изделия содержится информация о его типе, материале и прочих характеристиках. Посмотрите пример маркировки для изолятора НСПКр 120 – 3/0,6 – Б.

  • Первая буква Н указывает на назначение модели, в данном случае Н — натяжной. Также может быть К – консольный, Ф – фиксаторный, П – подвесной.
  • С – обозначает, что это стержневой изолятор.
  • П – изоляционный материал, в данном случае П – полимер.
  • К – наружное покрытие, в данном случае кремнийорганическая резина.
  • р – индекс, обозначающий, что защитная оболочка ребристая цельнолитая.
  • 120 – показатель нормированного разрушающего усилия в кН.
  • 3 – класс напряжения проводов ВЛ, для которого применяется.
  • 0,6 – обозначает длину пути тока утечки, измеряемую в метрах.
  • Б — обозначает вид зацепления.

Свойства диэлектриков

Для того чтобы гарантировать выполнение важных функций, электроизоляционные изделия должны обладать необходимыми свойствами. Основное отличие диэлектрика от проводника – намного большее удельное сопротивление (100-1100 Ом*см). С другой стороны, их электрическая проводимость в 14-15 раз ниже токоведущих жил. Связано это с природным происхождением изоляционных материалов, в составе которых намного меньше свободных отрицательных электронов и положительно заряженных ионов, влияющих на токопроводимость.

Важно! Несмотря на последнее высказывание, при нагревании любого диэлектрика количество ионов и электронов существенно возрастает, из-за чего повышается электрическая проводимость и возникает риск пробоя током. Все свойства диэлектриков можно разделить на две основные группы – активные и пассивные, при этом вторая является наиболее важной

К пассивным относится диэлектрическая проницаемость: чем меньше ее значение, тем более надежным и качественным является изолятор, поскольку он не оказывает негативного влияния на электрическую схему и не добавляет паразитные емкости. С другой стороны, если изделие эксплуатируется в роли диэлектрического конденсатора, то проницаемость должна быть максимально высокой (паразитные емкости в данном случае важны)

Все свойства диэлектриков можно разделить на две основные группы – активные и пассивные, при этом вторая является наиболее важной. К пассивным относится диэлектрическая проницаемость: чем меньше ее значение, тем более надежным и качественным является изолятор, поскольку он не оказывает негативного влияния на электрическую схему и не добавляет паразитные емкости

С другой стороны, если изделие эксплуатируется в роли диэлектрического конденсатора, то проницаемость должна быть максимально высокой (паразитные емкости в данном случае важны).

Проект «Влияние толщины провода на протекание электричества»

Проводник – это материал, хорошо проводящий электрический ток. Полупроводник – это материал, имеющий более низкую проводимость, чем проводник.

Помогает ли более широкий проводник протекать электричеству? Посмотрим, какой провод лучшим образом проводит ток.

Цель – выяснить, через какой провод электричество протекает проще: через толстый или тонкий.

Ход эксперимента:

  1. Сделайте свои предположения. Будет ли цепь с более толстым проводом проводить электричество лучше, чем с тонким?
  2. Расположите батарейки на ровной поверхности. К одной присоедините тонкий провод, а к другой – толстый.
  3. Чтобы присоединить провода, отрежьте от трубочки два одинаковых кусочка. Наклейте по одному кусочку вдоль каждой батареи.
  4. Из стальной ваты получатся отличные тонкие провода. Разберите ее на волокна, соберите их на краю стола.
  5. Теперь нужно изготовить проводник. Возьмите три стальных проволочки, скрутите их в тонкий провод. Затем возьмите еще десять, также скрутите их.
  6. Теперь у вас есть два провода – тонкий и толстый. Проденьте тонкий в одну из трубочек, а толстый – в другую.
  7. Прикрепите один конец тонкого провода к минусу батарейки.
  8. Оберните другой конец тонкого провода вокруг основания одной из лампочек, а затем приклейте его к лампочке при помощи изоленты, но так, чтобы нижняя ее часть осталась свободной.
  9. Теперь коснитесь нижней частью лампочки плюса батареи. Если цепь замкнута, ваша лампочка загорится.
  10. Повторите шаги 7-9 для толстого провода. Какая лампочка горит ярче?

Вывод:

Лампочка в цепи с более толстым проводом горит ярче. Значит она проводит больше электричества? Почему? Представьте автомобильную парковку, забитую машинами, которые торопятся выехать – это батарейка. Для выезда открывают одну полосу дороги. Как быстро машины покинут стоянку? А теперь представьте, что открыта трасса в четыре полосы. Быстрее ли машины покинут стоянку теперь?

Тонкий провод проводит электричество, но в нем выше сопротивление. Толстый провод похож на трассу с четырьмя полосами. В нем сопротивление намного ниже, поэтому лампочка горит ярче – электричеству проще до нее добраться.

Выскажите свое предложение о том, что произойдет, если использовать другой проводник. Будет ли электричество так же протекать через любой проводник?

Проект «Какие вещества проводят электричество при растворении в воде»

Электрический поток – результат движения электрически заряженных частиц(электричества) под действием сил приложенного к ним электрического поля. Чистая вода плохо проводит электричество, но некоторые элементы, растворенные в ней, позволяют ей проводить ток. Такие вещества при растворении образуют ионы (заряженные частицы), которые переносят заряд внутри раствора. Растворы, обладающие этим свойством, называются электролитами. Чем больше ионов в растворе, тем выше его проводимость. Неэлектролиты – растворы, не содержащие ионы и не проводящие ток. Электролиты могут быть слабыми или сильными. Это зависит от того, как они ионизируются: полностью или частично.

Проводимость раствора можно измерить при помощи устройства проводимости, состоящего из двух металлических электродов, обычно располагаемых на расстоянии 1 см (именно поэтому она измеряется в микросименсах или миллисименсах на сантиметр). На оба электрода подается постоянное напряжение. Это вызывает электрический ток в растворе. Поскольку он пропорционален количеству ионов в воде, проводимость можно измерить. Чем выше концентрация ионов, тем выше проводимость образца.

Устройство проводимости обычно используется в гидропонике, бассейнах, а также системах очистки воды для отслеживания количества питательных веществ, солей или загрязнений.

Раствор некоторых веществ в воде проводит электричество. Эти вещества при растворении образуют ионы, и эти ионы переносят заряд через раствор. Этот проект направлен на то, чтобы собрать устройство для выявления того, раствор каких веществ может проводить электричество, а каких – нет.

В фокусе этого проекта – создание устройства, которое позволило бы определить, какие вещества, будучи растворенными, могут проводить электричество – и каким типом электролита они в этом случае являются.

Что нам понадобится:

  • устройство проводимости;
  • пластиковые стаканчики;
  • большие скрепки;
  • изолента;
  • разные виды воды: дистиллированная, минеральная, газированная;
  • уксус;
  • сахар;
  • соль.

Ход эксперимента:

  1. Эксперименты с электричеством в домашних условиях требуют внимательности. Не глотайте вещества, используемые в этом опыте!
  2. Приготовьте разные виды воды.
  3. Приготовьте растворы соли и сахара, растворив их в дистиллированной воде.
  4. Налейте жидкость в стаканчик.
  5. Разогните скрепки, закрепив их изолентой на противоположных сторонах стаканчика.
  6. Не помещайте контакты прямо в раствор, иначе со временем они заржавеют. Вместо этого поместите их на скрепки, а скрепки опустите в раствор.
  7. Результаты наблюдений отобразите в таблице и в виде графика. В зависимости от того, какое устройство проводимости вы используете, отметьте, горят ли LED-лампы и степень их яркости. Ополаскивайте стаканчик и скрепки дистиллированной водой между опытами.
  8. Если неподалеку есть источник, проверьте воду из него на проводимость. Если она проводит электричество, подумайте, какие вещества могли быть в нем растворены и откуда они могли взяться.
  9. Отметьте галочкой поле, соответствующее свету, производимому LED-лампой. В зависимости от яркости лампы распределите жидкости на сильные, средние, слабые электролиты или неэлектролиты.
Интенсивность света/ жидкость Яркий Средней яркости Слабый Нет света Тип электролита
Дистиллированная
Из-под крана
Минеральная
Дождевая
Раствор соли
Раствор сахара
Газированная
Уксус

Вывод:

Что такое электричество? Что такое электролит? Что такое проводимость? Какие вещества оказались хорошими электролитами по результатам опыта? Посмотрите на этикетку бутылки минеральной воды. Как вы думаете, какие вещества в ее составе помогают проводить ток? Посмотрите на этикетку бутылки газированной воды. Как вы думаете, какие вещества в ее составе помогают проводить электричество? Жидкая паста внутри батареек для фонарика – электролит. Какие из протестированных веществ могли бы использоваться в качестве такого электролита? Подумайте, какие еще опыты с электричеством в домашних условиях можно провести на основе проведенного проекта.

Типы изоляторов

Изоляторы играют одну из основных ролей в обеспечении безопасной передачи электроэнергии и минимизации ее потери в процессе передачи

ООО «Альфа Энерго» — ведущий российский разработчик и производитель полимерных опорно-стержневых изоляторов серии ИОСПК.

Изоляторы можно разделить на следующие типы:

По применению:

  1. Опорно -стержневой изолятор. Данный тип изолятора используется в качестве опорных поворотных изолирующих элементов, поддерживающих токоведущие шины и «ножи» разъединителей наружной установки, а также в составе шинной опоры.
  2. Линейный изолятор. Данный тип изолятора используется на высоковольтных линиях электропередачи и в распределительных устройствах электростанций и подстанций переменного тока

По материалу:

  1. Фарфоровый изолятор Данный тип изолятора обладает известными недостатками: склонностью к хрупкому растрескиванию и разрушению, относительно низким допускаемым механическим напряжением, неопределенностью прочностных свойств в состоянии «изгиб плюс кручение», проблемами с обеспечением долговременной надежной армировки фланцев-оконцевателей и др. Вместо него, согласно Приказу РАО «ЕЭС России» от 06.05.02 г. №252 «О повышении надежности опорных стержневых изоляторов 110-220 кВ», возможно применение альтернативных полимерных изоляторов.
  2. Полимерный изолятор Основными преимуществами полимерного изолятора являются повышенная стойкость внешней полимерной изоляции в условиях загрязненной атмосферы; долговечность и надежность в широком диапазоне воздействия механических нагрузок и изменения температуры; малая масса; значительная экономия средств при монтаже и замене, антивандальность и др.

Тип полимерного изолятора, согласно требованиям ГОСТ, определяется видом конструкции, материалом защитной оболочки, классом напряжения, механической разрушающей силой, максимальной степенью загрязнения, при которой может применяться изолятор, климатическим исполнением и категорией размещения.

Условное обозначение типа изолятора состоит из букв и цифр, которые означают:И

изолятор
О опорный
С стержневой
П полимерный
К защитная оболочка из кремнийорганической резины
10-110; 8-220 и т.д. значение механической разрушающей силы на изгиб в кН; тире, класс напряжения, кВ
450, 480 и т.д. испытательное напряжение грозового импульса, кВ
I-IV максимальная степень загрязнения (СЗ) по ГОСТ 9920, при которой может применяться изолятор
У, УХЛ климатическое исполнение по ГОСТ 15150
1 категория размещения по ГОСТ 15150 — для эксплуатации на открытом воздухе

Пример записи условного обозначения изолятора ИОСПК-10-110/450-II-УХЛ1 ТУ 3494-002-52314081-02 (обозначение технических условий):

  • минимальная механическая разрушающая сила на изгиб — 10 кН;
  • класс напряжения 110 кВ;
  • испытательное напряжение грозового импульса — 450 кВ;
  • для работы в районах с 2 степенью загрязнения;
  • климатическое исполнение УХЛ;
  • категория размещения — 1.

Классификация

Для обеспечения надежного электроснабжения и соблюдения максимального уровня безопасности в каждом конкретном случае в электроустановках должны применяться изоляторы соответствующего типа и конструкции. В зависимости от критерия выделяют несколько параметров их классификации.

По назначению

В зависимости от назначения выделяют такие виды изоляторов:

  • Стационарные – применяют для механического крепления токоведущих стержней или ошиновки в распределительных устройствах. В зависимости от назначения стационарные изоляторы дополнительно подразделяются на опорные и проходные. Так опорные изоляторы выступают в роли основания, на которое крепятся шины в ячейках или несущих конструкциях. Проходные изоляторы позволяют провести токоведущий элемент сквозь стену или перекрытие помещения.
  • Аппаратные – имеют схожее назначение со стационарными, но применительно к каким-либо аппаратам. К примеру, аппаратные изоляторы нашли широкое применение в выпрямительных установках, силовых приборах, комплектных подстанциях, установках аппаратов высокого напряжения и прочих агрегатах. Посмотрите на рисунок 5, здесь представлен пример его использования, где он имеет обозначение АИ.

    Рис. 5. Пример аппаратных изоляторов

  • Линейные – используются для наружной установки под высоковольтные линии или ошиновку открытых распредустройств. Отличительной чертой линейных изоляторов является наличие широких ребер или юбок, предназначенных для увеличения пути поверхностного пробоя в случае выпадения осадков.

По материалу исполнения

В зависимости от применяемого диэлектрика выделяют такие виды изоляторов:

  • С фарфоровым корпусом – отличаются высокой механической прочностью на сжатие, но боятся динамических воздействий. Для предотвращения появления проводящих каналов, из-за оседания пыли и грязи на поверхности, керамический материал покрывается глазурью.
  • Полимерные изоляторы – подразделяются на модели, которые имеют упругую деформацию и монолитные. Отличаются куда большим удельным сопротивлением материала, чем фарфоровые. Но мягкая поверхность в большей мере подвержена загрязнению, чем покрытый глазурью фарфор. Помимо этого из-за воздействия ультрафиолета полимер разрушается и утрачивает свойства, поэтому их применяют для внутренней установки.
  • Стеклянные электрические изоляторы – отличаются не такой высокой прочностью, подвержены сколам при динамических воздействиях. Но в отличии от других материалов не подвержены воздействию агрессивных реагентов. Обладают меньшим весом и более просты в обслуживании, чем фарфоровые.

По способу крепления на опоре

В зависимости от способа крепления бывают:


Классификация по способу крепления

  • Штыревого типа (а) – крепятся посредством металлической арматуры и выступают в роли опоры воздушных ЛЭП, откуда и возникло название опорно-штыревые изоляторы.
  • Подвесные (б) – выполняются тарельчатыми изоляторами, которые собираются в гирлянды, в зависимости от класса напряжения присоединенных к ним электрических аппаратов.
  • Стержневые (в) – имеют форму сплошного стержня, который устанавливается в качестве опорного или подвешивается за элементы арматуры в качестве натяжного. Опорно-стержневые изоляторы устанавливается в распредустройствах для изоляции шин. На их краях посредством чугунных крыльев крепятся токоведущие части.

2.5. Электрофизические процессы в газах

Частицы газа
находятся в состоянии теплового движения,
постоянно взаимодействуя (сталкиваясь)
друг с другом. Число столкновений z,
испытываемых какой либо частицей на
пути в 1 см, пропорционально концентрации
N.
Величина, обратная числу столкновений,
=1/z
представляет
собой среднюю
длину свободного пробега

частицы. Действительные длины свободных
пробегов подвержены значительному
разбросу. Вероятность того, что длина
свободного пробега частицы равна или
больше x,
cоставляет

(1)

В электрическом
поле на заряженные частицы (ионы и
электроны) действует сила

F=eE,
(2)

где е
— заряд
частицы; Е —
напряженность электрического поля.

Энергия, накапливаемая
электроном в электрическом поле, равна

(3)

где х
— расстояние,
пролетаемое электроном в направлении
поля.

Если
больше энергии ионизации,
то при столкновении электрона с
нейтральной частицей может произойти
ионизация. Если энергии электрона
недостаточно для этого, то возможно
возбуждение частицы, а при столкновении
с возбужденной частицей, находящейся
в метастабильном состоянии, такой
электрон может участвовать в процессе
ступенчатой ионизации.

Расстояние, который
должен пролететь электрон, чтобы накопить
достаточную для ионизации энергию,
определяется как

(4)

и зависит от
напряженности электрического поля.

Вероятность того,
что электрон пролетит путь
без столкновений, составляет

,
(5)

но это и есть
вероятность приобретения электроном
энергии
,
при которой возможна ионизация, т.е.можно
считать вероятностью ионизации.

Процесс ионизации
газа путем соударения нейтральных
молекул с электронами называется ударной
ионизацией и характеризуется коэффициентом
ударной ионизации

,
который равен числу ионизаций, производимых
электроном на пути в 1 см по направлению
действия сил электрического поля.
Коэффициент 
определяется как произведение среднего
числа столкновений на пути в 1 см и
вероятности ионизации:

(6)

Положительные
ионы практически не могут ионизировать
молекулы газа по ряду причин: малая
подвижность; значительно меньшие, чем
у электронов, длины свободного пробега.
Частота ионизаций положительными ионами
в
раз
меньше, чем электронами.

Однако положительные
ионы, бомбардируя катод, могут освобождать
из него электроны.

В процессе ионизации
газа возникает большое количество
возбужденных частиц, которые, переходя
в нормальное состояние, испускают
фотоны. Если энергия фотона превышает
энергию ионизации

(7)

где 
-частота излучения; h
=4,15эВс
-постоянная Планка, то при поглощении
его атомом или молекулой освобождается
электрон, происходит акт фотоионизации
газа. В воздухе фотоионизация происходит
в сильных электрических полях, когда
становится возможным возбуждение
положительных ионов, и при переходе их
в невозбужденное состояние излучаются
фотоны с достаточно высокой энергией.
Энергия излучаемых фотонов выше работы
выходя электронов из катода, поэтому в
воздухе эффективна фотоионизация на
катоде.

Оба фотоионизационных
процесса — в объеме газа и на катоде —
играют важную роль в развитии разряда
в воздухе. Фотоионизация в объеме газа
и на катоде, а также освобождение
электронов при бомбардировке катода
положительными ионами происходят как
следствие ударной ионизации. Эти процессы
называются процессами
вторичной ионизации
.
Соответственно, появившиеся в результате
этих процессов электроны называются
вторичными.

Число вторичных
электронов пропорционально числу актов
ударной ионизации. Коэффициент
пропорциональности 
называется коэффициентом
вторичной ионизации
.
Значение 
зависит от природы и давления газа,
материала катода и напряженности
электрического поля, а также оттого,
какой процесс вторичной ионизации
превалирует.

Одновременно с
ионизацией происходит процесс взаимной
нейтрализации заряженных частиц,
называемый рекомбинацией. Число
рекомбинаций, происходящих в 1 смгаза за единицу времени, пропорционально
их концентрациям. Избыток энергии
выделяется в виде излучения.

При значительном
повышении температуры газа кинетическая
энергия нейтральных частиц возрастает
настолько, что становится возможной
ионизация при их столкновении —
термоионизация.

Газ, в котором
значительная часть частиц ионизирована,
называется плазмой. Концентрации
положительно и отрицательно заряженных
частиц в плазме примерно одинаковы.
Плазма представляет собой форму
существования вещества при высоких
температурах.

Что из себя представляют электрические изоляторы?

Электрические изоляторы представляют собой диэлектрический элемент электроустановки, конструктивно выполняемый из изоляционного материала и армирующих деталей. Диэлектрик предназначен для электрического отделения, а металлические конструкции позволяют зафиксировать как сам изолятор, так и проводники на нем. В качестве диэлектрического материала используется стекло, полимер или керамика.

Назначение

Электрические изоляторы предназначены для крепления шин, проводов, тралеи и прочих токоведущих элементов к корпусу электроустановки, консолям опор и прочим конструкциям. Помимо этого они изолируют проводники при прохождении через стены, позволяют отделить электроустановки друг от друга и прочие несущие функции.

В зависимости от места установки их подразделяют на внутренней и наружной

Также немаловажное значение играет класс напряжения, на который рассчитан тот или иной изолятор. Из-за чего будет отличаться его конструктивное исполнение и определенные технические характеристики, определяющие возможность их применения в тех или иных электроустановках

Основные технические характеристики

В соответствии с требованиями нормативных документов, для электрических изоляторов регламентируются такие характеристики:

  • Сухоразрядное напряжение — это такая величина, при которой произойдет электрический разряд в условиях сухого состояния поверхности.

    Перекрытие изолятора

  • Мокроразрядное напряжение – определяет такую же величину, как и предыдущий параметр, но при условии попадания дождя на поверхность. При этом рассматривается такой вариант, когда направление струй располагается под углом 45°.


Рис. 2. Изолятор под дождем При таком потоке струй под углом 45°, которые обозначены на рисунке 2 буквой А, обеспечивается максимальное обтекание поверхности Б, и, как следствие, обеспечивается минимальное сопротивление электрическому току – от 9,5 до 10,5 кОм*см. Этот параметр всегда ниже сухоразрядного.

  • Напряжение пробоя – представляет собой такую величину, при которой произойдет пробой между двумя полюсами. В зависимости от конструкции, полюса могут быть представлены стержнем и шапкой либо шиной и фланцем.
  • Механическая прочность – проверяется нагрузкой на изгиб, разрыв или срез головки. При этом конструкцию жестко закрепляют и прикладывают к ней усилие, плавно повышаемое до такого уровня высочайшего напряжения в материале, которое приводит к разрушению.
  • Термическая устойчивость – испытывается посредством попеременного нагревания и резкого охлаждения. Состоит из двух-трех циклов, в зависимости от материала и конструкции. После чего прикладывается электрический потенциал, создающий множественные разряды.

Проверка технических характеристик.

Следует отметить, что испытательные процедуры не являются обязательными для всех изоляторов, выпускаемых на заводе. Электрическим, термическим и механическим воздействиям подвергаются только 0,5% от партии. Обязательной для всех изоляторов является проверка напряжением перекрытия в течении трех минут, при котором на изоляторе возникают искровые разряды.

У подвесных изоляторов обязательно проверяется механическая характеристика. Для этого в течении минуты к нему прикладывается механическая нагрузка, которую регламентируют заводские или государственные нормы.

Такие испытания обеспечивают нормальную работу электрических изоляторов при номинальных токах и номинальных напряжениях в сети. А также, достаточный уровень надежности. Кроме этого, некоторые модели подвергаются периодической проверке в ходе эксплуатации. По результатам периодических осмотров и испытаний они могут проходить очистку, выбраковку и замену.

Обзор электрических изоляторов типа "ПС"(подвесной стеклянный)ПС-70, ПСД, ПСВ.Обзор электрических изоляторов типа «ПС»(подвесной стеклянный)ПС-70, ПСД, ПСВ.

Проект «Создание реостата»

Реостат – небольшое устройство, регулирующее напряжение поворотом ручки.

Что нам понадобится:

  • лампочка для фонарика и патрон к ней;
  • две батарейки D;
  • отрезки провода около 40 см и около 5 см;
  • длинная пружина;
  • кусачки.

Ход эксперимента:

Соедините батарейки таким образом, чтобы плюс одной контактировал с минусом другой.
Разрежьте длинный провод пополам и присоедините фрагменты к концам соединенных батареек.
Соедините свободный конец одного провода с контактом патрона

Соедините свободный конец второго провода с концом пружины.
Соедините маленький провод с другим контактом патрона.
Замкните цепь и обратите внимание на то, как ярко светится лампочка. Если лампочка засветилась, значит по проводам пошло электричество!
Теперь медленно ведите концом короткого провода по пружине

Что происходит?

Вывод:

Чем дальше вы ведете по пружине, тем менее ярко будет светить лампочка. Чем длиннее тот участок пружины, который электричеству приходится преодолевать, тем выше сопротивление. Устройство, которое у вас получилось, называется реостат. Оно позволяет изменять поток электричества, проходящий через него.

Проходной изолятор [ править | править код ]

Предназначен для прово́да токоведущих элементов через стенку, имеющую другой электрический потенциал. Проходной изолятор с токопроводом содержит токоведущий элемент, механически соединенный с изоляционной частью.

Изоляторы предназначены для крепления токопроводов, а также для создания изоляционных промежутков между токопроводами различных фаз и между токопроводами и заземленными конструкциями. По назначению изоляторы подразделяются на станционные, линейные и аппаратные.

Станционные изоляторы предназначены для закрепления токопроводов в закрытых распределительных устройствах, а также для пропуска их через стены и перекрытия. Они соответственно подразделяются на опорные и проходные.

Линейные изоляторы предназначены для закрепления проводов на ВЛ и ОРУ. Они подразделяются на штыревые, стержневые и подвесные.

Изоляторы высоковольтной аппаратуры, опорные и проходные, являются неотъемлемой частью аппаратуры и по конструктивному исполнению могут быть разной формы.

Диэлектрические материалы, из которых изготавливаются изоляторы, должны иметь высокую электрическую и механическую прочность. Эти характеристики должны обеспечиваться как в нормальных условиях эксплуатации, так и в аварийных режимах, при различных атмосферных условиях, быть негигроскопичными, трекингостойкими, работать в широком диапазоне температур и в агрессивной среде.

Всем этим требованиям удовлетворяют следующие материалы: глазурированный электротехнический фарфор, стекло и некоторые пластмассы.

Фарфор обладает следующими характеристиками: электрическая прочность ; механическая прочность фарфора зависит от характера деформации , , ;

допустимый перепад рабочих температур 70ºC. Одно из достоинств фарфора как изоляции – низкая стоимость.

Стекло имеет электрическую прочность . Механические характеристики стекла примерно такие же, как у фарфора. Закаленное стекло допускает нагрузку до 530 кН. Стеклянные изоляторы могут изготавливаться методом штамповки и не требуют глазуровки. Прозрачность стекла позволяет легко обнаруживать трещины и другие дефекты, что облегчает контроль во время производства и эксплуатации.

Общий недостаток фарфоровых и стеклянных изоляторов – значительная масса и размеры.

В настоящее время широкое распространение получили изоляторы на основе стеклопластиков и полимерных покрытий. Полимерные изоляторы практически не повреждаются при транспортировке и имеют значительно меньшую (в 7–10 раз) металлоемкость подвесок, меньшую массу и размеры.

Металлическую арматуру изоляторов изготавливают из стали, ковкого и немагнитного чугунов или цветного металла. Немагнитный чугун и цветной металл применяются при больших токах с целью снижения потерь. Для крепления арматуры к диэлектрику используют высококачественные цементы и другие связующие.

Рис. 2.1 – Опорные изоляторы

Для изготовления изоляторов высоковольтной аппаратуры используется также эпоксидная смола, бакелизированная бумага и слоистые пластики. В высоковольтных вводах применяют бумажномасляную и маслобарьерную изоляцию, защищенную фарфоровыми покрышками.

Под воздействием токов короткого замыкания, ветра, гололеда и веса проводов высоковольтная изоляция испытывает большие механические нагрузки и вибрации. Кроме того изоляция ВЛ и ОРУ подвержена воздействию тумана, дождя, загрязнению и резким колебаниям температуры. Поэтому изоляционные материалы должны обеспечивать длительную электрическую прочность с учетом климатических условий и уровня перенапряжений, а также достаточную механическую прочность.

Для обеспечения надежной и безопасной работы изоляция подвергается испытанию повышенным напряжением. Значения испытательных напряжений для изоляции разных классов напряжения приводятся в таблицах. Для изоляторов внутренней установки определяющим является сухоразрядное напряжение , а для изоляторов наружной установки – мокроразрядное – напряжение перекрытия под дождем.

Последнее изменение этой страницы: 2017-02-05; Нарушение авторского права страницы

Классификация

Многошейковый изолятор РФО на крюке

Линейный штыревой изолятор ШФ-10Г

Фарфоровый роликовый изолятор

Электрические изоляторы классифицируются по назначению, конструктивному исполнению, материалу изготовления, техническим характеристикам и условиям эксплуатации.

  • Опорный.
    • Для работы в помещениях — с гладкой поверхностью и ребристые.
    • Для работы на открытом воздухе — штыревые, стержневые.
  • Проходной.
    • Для работы в помещениях — с токоведущими шинами (токопроводами), без токоведущих шин.
    • Для работы на открытом воздухе — с нормальной и усиленной изоляцией.
  • Высоковольтные вводы для работы на открытом воздухе — в герметичном и негерметичном исполнении.
  • Линейный для работы на открытом воздухе — штыревой, тарельчатый, стержневой, орешковый, анкерный.
  • Защитный — полый изолятор, предназначенный для использования в качестве изолирующей защитной оболочки электротехнического оборудования.
  • Такелажный изолятор для установки между работающими на растяжение тросами оттяжек антенных мачт, подвесками контактной сети, проводами антенн.

Электрические изоляторы могут изготавливаться из стекла, фарфора и полимерных материалов. Фарфоровые изоляторы покрываются глазурью для улучшения изолирующих свойств.

По материалу изготовления

По материалу изготовления изоляторы подразделяются на фарфоровые, стеклянные и полимерные:

  • Фарфоровые изоляторы изготавливают из электротехнического фарфора, покрывают слоем глазури и обжигают в печах.
  • Стеклянные изоляторы изготавливают из специального закалённого стекла. Они имеют бо́льшую механическую прочность, меньшие размеры и массу, медленнее подвергаются старению по сравнению с фарфоровыми, но имеют меньшее электрическое сопротивление.
  • Полимерные изоляторы изготавливают из специальных пластических масс

    предназначен для изоляции и механического крепления токоведущих частей в электрических аппаратах и для монтажа токоведущих шин распределительных устройств электрических станций и подстанций.

    .

По способу крепления на опоре

По способу крепления на опоре изоляторы подразделяются на штыревые и подвесные:

  • Штыревые изоляторы (крепятся на крюках или штырях) применяются на воздушных линиях до 35 кВ
  • Подвесные изоляторы (собираются в гирлянду и крепятся специальной арматурой) применяются на ВЛ 35 кВ и выше.
  • Линейные опорные изоляторы (крепятся к траверсам или стойкам опор ЛЭП с помощью болтов) применяются на ВЛ до 154 кВ (в отечественной практике — на ВЛ 6-10 кВ).

Штыревые изоляторы

Название получили по методу крепления к траверсам опор линий электропередачи с помощью штыря или крюка.

Штыревые изоляторы выпускаются на напряжения 10, 20 и 35 кВ. В мировой практике диапазон выпускаемых штыревых изоляторов расширен до напряжения 66 кВ.

Принципиально конструкции фарфоровых и стеклянных штыревых изоляторов не отличаются друг от друга. Как правило, штыревые изоляторы представляют собой массивное тело, изготовленное из фарфора, стекла или полимерного материала, с развитой боковой или нижней поверхностью для увеличения длины пути утечки тока. Для крепления проводов в различных плоскостях изоляторы имеют головку с канавками на боковой поверхности или вверху. Крепление изолятора на металлическом штыре или крюке осуществляется различными методами. В теле изолятора имеется глухое резьбовое отверстие. Как правило, соединение штыря или крюка с резьбовым отверстием изолятора осуществляется с помощью специальных полиэтиленовых втулок (колпачков).

В практике существуют и другие методы крепления штырей в теле изолятора: уплотнением с помощью пакли или сурика, армированием цементной связкой, вворачиванием штырей с резьбовым хвостовиком в изолятор, заармированный предварительно гильзой из латуни, цинка или свинца. Каждый из указанных методов, а следовательно, и конструкция изолятора выбираются исходя из требуемой прочности заделки. Применение предварительно заармированных в теле изолятора металлических гильз хотя и увеличивает прочность заделки, но значительно повышает стоимость изолятора.

В зависимости от требований механической и электрической прочности конструкция штыревых юбочных изоляторов может быть одноэлементной и многоэлементной. Изоляторы, предназначенные для линий напряжением до 35 кВ, выполняются одноэлементными. Характеристики фарфора и стекла, применяемых для этих целей, позволяют обеспечить требуемые параметры изолятора.

Для повышения механической прочности штыревых изоляторов, изготовленных из стекла, может быть использован метод поверхностного упрочнения стекла (так называемая полузакрутка). Закалка штыревых стеклянных изоляторов недопустима во избежание возможности самопроизвольного разрушения закаленного стеклоэлемента и падения провода на землю.

Штыревые юбочные изоляторы в силу своих конструктивных особенностей подвержены электрическому пробою.

Для увеличения длины пути утечки тока на поверхности стержня располагают выступающие ребра. Нижний торец изолятора армируется металлическим фланцем, который с помощью штыря-шпильки или нескольких болтов крепится к траверсе опоры. Провод к таким изоляторам крепится к траверсе опоры.

Провод к таким изоляторам крепится либо обычным способом вязки к канавке, расположенной в верхнем торце изолятора, либо в специальном металлическом зажиме, глухосоединенным с изолятором.

Рном – номинальная мощность наибольшего однофазного ЭП.

Оцените статью
Рейтинг автора
5
Материал подготовил
Илья Коршунов
Наш эксперт
Написано статей
134
Добавить комментарий