Общее сопротивление электрической цепи, чему оно равно и как найти по формуле

ЭДС электрического тока

Как вы помните из прошлых статей, молекулы воды – это “электроны”. Для возникновения электрического тока, электроны должны двигаться в одном направлении. Но чтобы они двигались в одном направлении, должно быть напряжение и какая-нибудь нагрузка. То есть вода в башне – это напряжение, а люди, которые тратят воду для своих нужд – это нагрузка, так как они создают поток воды из трубы, которая находится у подножия водобашни. А поток – это не что иное, как сила тока.

Также должно соблюдаться условие, что вода должна всегда быть на максимальной отметке, независимо от того, сколько людей тратит ее для своих нужд одновременно, иначе башня опустошится. Для водобашни этим спасительным средством является водонасос. А для электрического тока?

Для электрического тока должна быть какая-то сила, которая бы толкала электроны в одном направлении в течение продолжительного времени. То есть эта сила должна двигать электроны! Электродвижущая сила! Да, именно так! ЭЛЕКТРОДВИЖУЩАЯ СИЛА!  Можно назвать ее сокращенно ЭДС – Электро Движущая Сила. Измеряется она в вольтах, как и напряжение, и обозначается в основном буквой E.

Значит, в наших батарейках тоже есть такой “насос”? Есть, и правильней было бы его назвать “насос подачи электронов”). Но, конечно, так никто не говорит.  Говорят просто  – ЭДС. Интересно, а где спрятан этот насос в батарейке? Это просто-напросто электрохимическая реакция, из-за которой держится “уровень воды” в батарейке, но потом все-таки этот насос изнашивается и напряжение в батарейке начинает проседать, потому как “насос” не успевает качать воду. В конце концов он полностью ломается и напряжение на батарейке стает практически ноль.

Сторонние электродвижущие силы

Поместим проводник в электростатическое поле. Рассмотрим процессы, которые будут там происходить:

  1. В начальный момент времени при воздействии электрического поля положительные заряды проводника станут двигаться из мест с большим потенциалом в места с меньшим потенциалом. Отрицательные заряды при этом двигаются в противоположном направлении.
  2. Противоположные концы проводника будут накапливать положительные и отрицательные заряды.
  3. В конце концов, поле индуцированных зарядов будет полностью компенсировать в объеме проводника внешнее поле, и ток остановится, система придет в электростатическое равновесие.

Выключим внешнее поле:

  1. Сохранится только поле индуцированных зарядов, появится ток, который связан с их нейтрализацией.
  2. По прошествии некоторого времени и данный ток прекратится.

Вывод: электростатическое поле не способно поддерживать в проводнике неизменный электрический ток. Для создания постоянного тока следует препятствовать установлению в проводнике электростатического равновесия. Что требует выполнения работы против сил электрического поля, которые стремятся уровнять все потенциалы поля всех точек в проводнике.

Готовые работы на аналогичную тему

  • Курсовая работа Физический смысл электродвижущей силы 450 руб.
  • Реферат Физический смысл электродвижущей силы 280 руб.
  • Контрольная работа Физический смысл электродвижущей силы 230 руб.

Получить выполненную работу или консультацию специалиста по вашему учебному проекту Узнать стоимость Данная работа может быть выполнена исключительно за счет сил, не относящихся к электростатическим. В этой связи, силы, поддерживающие электрический ток постоянным, называют сторонними электродвижущими силами (ЭДС).

Сторонние ЭДС могут обладать любой природой, например: механической; электромагнитной; * химической и т. д.

Определение 1

Приспособления для создания сторонних сил называют источниками ЭДС.

Мерой возможностей источников ЭДС порождать электрический ток является электродвижущая сила ($Ɛ$).

Определение 2

Электродвижущая сила соответствует работе, которую выполняют сторонние силы источника, двигая единичный положительный заряд внутри источника от полюса со знаком минус к положительному полюсу.

$Ɛ=\frac{A_{st}}{q}$.

Направлением ЭДС считают направление перемещения положительных зарядов внутри источника (от отрицательного полюса к положительному).

Лень читать?

Задай вопрос специалистам и получи ответ уже через 15 минут!

Задать вопрос

Если в исследуемом контуре источник ЭДС один, то направлением ЭДС можно считать направление течения тока в данном контуре.

Как можно измерить силу тока

Для измерения силы тока используется прибор, называемый амперметром. На электрических схемах он обозначается буквой А, заключенной в окружность.

В любом проводнике замкнутой цепи, собранной последовательно, протекает электрический ток одинаковой величины. Поэтому для его измерения достаточно просто разомкнуть эту цепь в любом месте и подключить амперметр. Нельзя подключать его к источнику тока при отсутствии устройства потребления.

Ток бывает переменный и постоянный. И для его измерения необходимы разные устройства. На шкале амперметров для постоянного тока имеется одно из следующих обозначений — «-», «DC» или указание на полярность подключения. Амперметры, предназначенные для измерения силы переменного тока обозначаются «\(\sim\)» или «АС».

Амперметр для постоянного тока необходимо включать в цепь с соблюдением полярности, то есть к клемме прибора, имеющей обозначение «+», присоединяют провод, идущий от положительного электрода.

Примечание

Если на источнике тока отсутствует указание полярности, то узнать ее можно по электрической схеме. Короткая линия всегда соответствует «минусу», а длинная — «плюсу».

Амперметр для переменного тока не имеет полярности и подключается без ее учета.

Описание прибора

Амперметр — это один из электроизмерительных приборов. Он обладает очень низким сопротивлением, чтобы не оказывать влияния на величину измеряемой силы тока. Ведь закон Ома гласит, что сила тока прямо пропорциональна напряжению и обратно пропорциональна сопротивлению. Это означает, что чем больше сопротивление проводников, тем меньше сила тока.

Шкала прибора может быть градуирована не только в А, но и в других кратных единицах — мкА, мА, кА.

Амперметры бывают:

  • аналоговые (стрелочные);
  • цифровые (электронные).

Измерители стрелочного типа не нуждаются в источнике питания, так как потребляют электрический ток непосредственно из измеряемой цепи. Но они показывают величину силы тока с некоторой задержкой, а не мгновенно.

Электронные амперметры практически полностью лишены такого недостатка как инерционность. Современные процессоры, используемые в этих моделях, обеспечивают частоту обновления показателей до 1000 в минуту. Их недостатком является высокая цена и необходимость отдельного источника питания для функционирования.

Внутреннее внешнее сопротивление

Внутреннее и внешнее сопротивление регулируется таким образом, чтобы разность потенциалов в ячейке составляла 6 — 7 в. Если электролиз продолжается слишком долго, то наступает резкое увеличение вольтажа, заметное выделение газа на поверхности катода и разложение амальгамы при взаимодействии с оставшимся электролитом. Это явление может возникнуть также вследствие образования кристаллов амальгамы бария, образующих корку на поверхности катода.

Щитовые милливольтметры М-64 с профильной шкалой.| Внешний вид и принципиальная схема самопишущего милливольтметра.

Причиной этой недостаточной точности является влияние окружающей среды на показания внутреннего и внешнего сопротивления цепи. Такие явления устраняются при использовании в пирометрах в качестве измерительного прибора потенциометра.

Мощность, развиваемая автомобильным дви — 1ателем, расходуется на преодоление внутренних и внешних сопротивлений движению; на фиг.

Структурная схема автоматического компенсатора напря.

Для компенсации напряжения необходимо высокое входное сопротивление, благодаря чему достигается независимость работы прибора от внутренних и внешних сопротивлений измерительной цепи. Выходные величины автоматических приборов уравновешивания могут быть представлены в виде механических перемещений регистрирующего органа или в виде напряжения и тока.

Внутренние сопротивления двигателей постоянного тока.

На рис. 2 — 2 показаны схемы включения в сеть двигателей параллельного, последовательного и смешанного возбуждения с обозначенными внутренними и внешними сопротивлениями.

Процесс торможения механизма передвижения состоит в преодолении сил инерции его поступательно движущихся и вращающихся элементов за счет момента, развиваемого тормозом, и момента от всех внутренних и внешних сопротивлений. Остановка механизмов передвижения без тормозов только под действием внешних и внутренних сопротивлений применяется крайне редко и в основном при использовании ручного привода или для тихоходных кранов. Необходимость установки тормозов на механизмах передвижения кранов и тележек со скоростями движения более 32 м / мин указана в Правилах Госгортехнадзора.

Графики зависимости величины, представляющей правую часть уравнения, от Дф — ф — фко для различных значений на.

На величину контактной ( гальванической) коррозии могут оказывать влияние в дополнение к обычным факторам, влияющим на металл в отсутствие контакта, соотношение потенциалов металлов, находящихся в контакте, их поляризационные характеристики, относительная поверхность анода и катода, а также внутреннее и внешнее сопротивления гальванического тока.

В большинстве практических задач нагревания и охлаждения теплопроводность материала и коэффициент конвективной теплоотдачи имеют конечные значения, что и предопределяет необходимость рассмотрения и анализа влияния внутреннего и внешнего сопротивления на теплообмен.

Кривые распределения насыщенностей пласта в многорядной системе скважин на моменты времени ti, t3, t3, ( по В. С. Орлову.

Выше принято, что по мере подхода фронта вытеснения к ряду скважин ряд отключается независимо от обводненности продукции его скважин. Для учета продолжающейся эксплуатации скважин в многорядных системах принимают, что зависимость насыщенности s от координаты х после прорыва воды в i — й ряд скважин имеет такой же параболический характер, как и до прорыва воды в первый ряд. Тогда расчеты выполняют аналогично, только внутренние и внешние сопротивления в водонефтяной зоне умножают на коэффициент aj, который определяют по насыщенно-стям zt ( на линиях рядов. Последние вычисляют в зависимости от суммарного количества жидкости, прошедшей через линию данного ряда.

Задача о диффузионном испарении капель, рассмотренная впервые Максвеллом, сегодня привлекает внимание исследователей. Все работы, касающиеся этого вопроса, можно разделить: а) по методам исследования — аналитическим и численным; б) по вкладу внутреннего и внешнего сопротивления процессам тепло — и массопереноса; в) на стационарные и нестационарные задачи; г) по отношению к внешней среде; д) по влиянию различных сил ( электрические, звуковые поля) на скорость испарения.

Простое объяснение электродвижущей силы

Предположим, что в нашей деревне имеется водонапорная башня. Она полностью наполнена водой. Будем думать, что это обычная батарейка. Башня — это батарейка!

Вся вода будет оказывать сильное давление на дно нашей башенки. Но сильным оно будет только тогда, когда это строение полностью наполнено H2O.

В итоге чем меньше воды, тем слабее будет давление и напор струи будет меньше. Открыв кран, заметим, что каждую минуту дальность струи будет сокращаться.

В результате этого:

  1. Напряжение – это сила с которой вода давит на дно. То есть давление.
  2. Нулевое напряжение — это дно башни.

С батареей все аналогично.

Первым делом подключаем источник с энергией в цепь. И соответственно замыкаем ее. Например, вставляем батарею в фонарик и включаем его. Изначально заметим, что устройство горит ярко. Через некоторое время его яркость заметно понизится. То есть электродвижущая сила уменьшилась (вытекла если сравнивать с водой в башне).

Если брать в пример водонапорную башню, то ЭДС это насос качающие воду в башню постоянно. И она там никогда не заканчивается.

Отдельный участок и полная электрическая цепь

Закон Ома, применительно к участку или всей цепи, может рассматриваться в двух вариантах расчетов:

  • Отдельный краткий участок. Является частью схемы без источника ЭДС.
  • Полная цепь, состоящая из одного или нескольких участков. Сюда же входит источник ЭДС со своим внутренним сопротивлением.

Расчет тока участка электрической схемы

В этом случае применяется основная формула I = U/R, в которой I является силой тока, U – напряжением, R – сопротивлением. По ней можно сформулировать общепринятую трактовку закона Ома:

Данная формулировка является основой для многих других формул, представленных на так называемой «ромашке» в графическом исполнении. В секторе Р – определяется мощность, в секторах I, U и R – проводятся действия, связанные с силой тока, напряжением и сопротивлением.

Каждое выражение – и основное и дополнительные, позволяют рассчитать точные параметры элементов, предназначенных для использования в схеме.

Специалисты, работающие с электрическими цепями, выполняют быстрое определение любого из параметров по методике треугольников, изображенных на рисунке.

В расчетах следует учитывать сопротивление проводников, соединяющих между собой элементы участка. Поскольку они изготавливаются из разных материалов, данный параметр будет отличаться в каждом случае. Если же потребуется сформировать полную схему, то основная формула дополняется параметрами источника напряжения, например, аккумуляторной батареи.

Вариант расчета для полной цепи

Полная цепь состоит из отдельно взятых участков, объединенных в единое целое вместе с источником напряжения (ЭДС). Таким образом, существующее сопротивление участков дополняется внутренним сопротивлением подключенного источника. Следовательно, основная трактовка, рассмотренная ранее, будет читаться следующим образом: I = U / (R + r). Здесь уже добавлен резистивный показатель (r) источника ЭДС.

С точки зрения чистой физики этот показатель считается очень малой величиной. Однако, на практике, рассчитывая сложные схемы и цепи, специалисты вынуждены его учитывать, поскольку дополнительное сопротивление оказывает влияние на точность работы. Кроме того, структура каждого источника очень разнородная, в результате, сопротивление в отдельных случаях может выражаться достаточно высокими показателями.

Приведенные расчеты выполняются применительно к цепям постоянного тока. Действия и расчеты с переменным током производятся уже по другой схеме.

Действие закона к переменной величине

При переменном токе сопротивление цепи будет представлять из себя так называемый импеданс, состоящий из активного сопротивления и реактивной резистивной нагрузки. Это объясняется наличием элементов с индуктивными свойствами и синусоидальной величиной тока. Напряжение также является переменной величиной, действующей по своим коммутационным законам.

Следовательно, схема цепи переменного тока по закону Ома рассчитывается с учетом специфических эффектов: опережения или отставания величины тока от напряжения, а также наличия активной и реактивной мощности. В свою очередь, реактивное сопротивление включает в себя индуктивную или емкостную составляющие.

Все этим явлениям будет соответствовать формула Z = U / I или Z = R + J * (XL – XC), в которой Z является импедансом; R – активной нагрузкой; XL , XC – индуктивной и емкостной нагрузками; J – поправочный коэффициент.

Резисторы

Резистор — это прибор с постоянным сопротивлением, такая радиодеталь помогает контролировать напряжение в цепи, понижая либо увеличивая его. По-другому говоря, это искусственное препятствие для электротока. Трудно представить любое электронное устройство без резисторов — их используют в компьютерах, телевизорах, сигнализациях, радиоприемниках и т. д.

На общих схемах резисторы маркируют следующим образом:

Обозначение резистора на схеме

Диагональными линиями обозначают мощность резистора до 1 Вт. Вертикальные линии и знаки V и X (римские цифры) обозначают мощность резистора соответственно значению римской цифры.

Общее сопротивление электрической цепи, чему оно равно и как найти по формуле.

Тема: как узнать какое сопротивление у электрической схемы, цепи по формуле.

Как известно во всем нужна своя мера, которая позволяет делать точные системы, устройства, механизмы, схемы. Мера множественная, имеет свои конкретные величины. В сфере электротехники основными величинами являются напряжение, ток, сопротивление, мощность, частота (для переменного и импульсного тока). Величины между собой связаны определенными формулами

Самой важной формулой, наиболее используемой электриками, электронщиками является закон Ома ( I = U/R, то есть — сила тока равна напряжению деленному на сопротивление). Зная любые две величины из этой формулы всегда можно найти третью

От сопротивления электрической цепи зависит силы тока при наличии определенного напряжения. Если меняется сопротивление в цепях схемы, то и меняться режимы ее работы в отдельных ее участках или во всей цепи. Знание величины сопротивления могут помочь выявить неисправность, узнать (вычислить из формулы) другие электрические величины в схеме, зависящие от этого сопротивления.

Теперь давайте посмотрим от чего зависит общее сопротивление электрической цепи. Общее — это сумма частных. Любая электрическая цепь и схема содержит в себе электрические компоненты, которые обладают внутренним сопротивлением. Даже обычный конденсатор (две пластины проводника, разделенные диэлектриком, что позволяет накапливать электрический заряд между этими пластинами, не пропуская постоянный ток), который, казалось бы, по сути своей его не должен иметь (точнее оно бесконечно большое) обладает реактивным сопротивлением.

Самая простая электрическая цепь состоит из источника питания и нагрузки. К примеру это будет обычная батарейка и маленькая лампочка накаливания. И батарейка и лампочка имеют свои сопротивления, которые суммируются, что определяет силу тока, текущему по этой простейшей цепи (при определенной величине напряжения). Допустим к нашей цепи мы добавим еще один элемент нагрузки (вторую такую же лампочку). Ее можно подключить к этой простейшей цепи двумя способами либо параллельно первой лампочки, либо же последовательно ей.

При последовательном подключении сопротивление будет суммироваться:

При параллельном подключении общее сопротивление можно найти по таким формулам:

То есть, большинство схем будут иметь в себе либо параллельное подключение сопротивлений, либо последовательное или же смешанное. В случае сложной электрической цепи определение общего электрического сопротивления происходит по частям (группам), состоящим, опять же, из параллельных и последовательных подключений элементов, обладающими сопротивлением. Правильнее начинать с той части цепи, схемы, которая имеет наибольшую удаленность от двух конечных выводов, рассматриваемых как контакты общего сопротивления. На рисунке ниже приведен пример последовательности вычисления общего сопротивления сложной цепи, схемы.

Но ведь существуют электрические цепи, в которых общее сопротивление может постоянно меняться, к примеру схема стабилизированного регулятора частоты вращения постоянного электродвигателя, подключенная к самому двигателю. При изменении нагрузки на валу двигателя будет меняться его внутреннее сопротивление, следовательно меняться будет и режимы работы схемы (поддерживающая нужную частоту вращения вала). В таких цепях электрическое сопротивление является динамическим, изменяющемся. Можно лишь рассчитать усредненное сопротивление, которое не будет абсолютно точным.

Помимо этого, как было подмечено ранее, существует еще реактивное сопротивление, которое бывает у индуктивных и емкостных элементов цепи. Оно явно себя проявляет в схемах, что работают с переменным, импульсным током. Если в цепях постоянного тока конденсатор (стоящий последовательно) не будет проводить через себя ток, то в цепи переменного тока будет все иначе. Причем его реактивное сопротивление будет зависеть от частоты (при одной и той же емкости). Вот формулы для нахождения реактивного емкостного и индуктивного сопротивления:

P.S. общее сопротивление можно находить и через использование закона Ома, который гласит, что сопротивление равно напряжение деленное на силу тока. Следовательно, берем мультиметр, измеряем ток и напряжение в том месте цепи, где хотим узнать сопротивление. Воспользовавшись формулой Ома находим (определяем) электрическое сопротивление нужного участка цепи. Напомню, что при использовании закона ома нужно применять основные единицы измерения — ток в амперах, напряжение в вольтах, а сопротивление в омах.

Комплект поставки бензопилы Stihl 180

Первые попытки

Первые попытки «накопить электричество» для дальнейшего его исследования и использования были предприняты в Голландии. Немец Эвальд Юрген фон Клейст и голландец Питер ван Мушенбрук, проводившие свои исследования в городке Лейден, создали первый в мире конденсатор, названный позже «лейденской банкой».

Накопление электрического заряда уже проходило под действием механического трения. Использовать разряд через проводник можно было в течение некоторого, достаточно короткого, промежутка времени.

Победа человеческого разума над такой эфемерной субстанцией, как электричество, оказалась революционной.

К сожалению, разряд (электрический ток, создаваемый конденсатором) длился настолько коротко, что создать постоянный ток не мог. Кроме того, напряжение, даваемое конденсатором, постепенно понижается, что не оставляет возможности получать длительный ток.

Нужно было искать иной способ.

Как определить формулой общее сопротивление цепи

Из закона Ома исходит то, что общее сопротивление равно общему напряжению, деленному на общую силу тока в цепи. При параллельном подключении напряжение, как уже было сказано, равно везде, поэтому необходимо узнать его значение на любом участке цепи. С током все сложнее, так как на каждой ветке его значение свое и зависит от конкретного R.

Также необходимо помнить, что могут быть параллельные подключения с нулевым значением R. Если в какой-либо ветке нет резистора или другого подобного элемента, но весь ток будет течь через нее и все общее значение для цепи станет нулевым. На практике это случается при выходе резистора из строя или при замыкании. Такая ситуация может навредить другим элементам из-за большой силы тока.

Таблица удельной величины для различных проводников

Идеальный источник ЭДС

Допустим, пусть наша батарейка обладает нулевым внутренним сопротивлением, тогда получается, что Rвн=0.

Нетрудно догадаться, что в этом случае падение напряжение на нулевом сопротивлении также будет равняться нулю. В результате, наш график примет вот такой вид:

В результате мы получили просто источник ЭДС.  Следовательно, источник ЭДС – это идеальный источник питания, у которого напряжение на клеммах не зависит от силы тока в цепи. То есть, какую нагрузку мы бы не цепляли на такой источник ЭДС, у нас он  все равно будет выдавать положенное напряжение без просадки. Сам источник ЭДС обозначается вот так:

На практике идеального источника ЭДС не существует.

Использование на практике

Закон Ома лежит в основе всех расчетов производимых в электронике и электротехнике. Будущих специалистов с первых дней учат, как использовать так называемый треугольник. Чтобы найти какую-то искомую величину, должны выполняться простые арифметические действия. Если два оставшихся параметра находятся в одной строке – они перемножаются. Если на разных уровнях, то верхний всегда делится на нижний.

Самые простые вычисления производятся на основе данных измерительных приборов. На участке цепи измерение тока выполняется амперметром, а напряжения – вольтметром. После этого найти сопротивление математическим путем не составит труда.

Для замеров сопротивления тоже есть прибор – омметр. Полученное выражение, подставляется в одну из формул, после чего находятся величины силы тока или напряжения. Точность омметра зависит от стабильности напряжения, подаваемого источником тока. Стабилизация проводится путем добавления резистора, выполняющего функцию регулятора.

Иногда требуется исключить из схемы какой-нибудь элемент без демонтажа. С этой целью проводится шунтирование, когда приходится устанавливать проводник на входных клеммах ненужного резистора. Ток начинает идти через шунт с меньшим сопротивлением, а напряжение на резисторе падает до нуля.

Закон Ома используется в защитных системах. Это делается с помощью уставок, обеспечивающих нормальную работу и отключающих питание лишь в аварийных ситуациях.

Мощность в цепи с реактивными радиоэлементами

При подключении таких элементов в цепь в четных четвертях периода мощность будет иметь отрицательное значение (в это время компонент направляет накопленную энергию в источник напряжения). В итоге использование энергии элементом за весь цикл оказывается равным нулю. Это означает, что на нем не происходит выделения энергии, так что на электросхемах такие детали изображаются холодными. На деле положение вещей может быть немного иным (это зависит от параметров конкретного элемента), бывает, что небольшие тепловые потери на конденсаторе или соленоиде все-таки имеют место. Но они не будут значительными, измеряющимися в кв.

Виды резисторов

Резистор – инертный (пассивный) элемент цепи, у которого сопротивление может быть как постоянным, так и переменным. Это зависит от его конструкции. Он применяется для регулирования силы тока и напряжения в цепях, рассеивания мощности и иных ограничений. Дословный перевод с английского слова «резистор» – сопротивляюсь.

Общий вид элементов

Классификацию резисторов можно провести по следующим критериям:

  • назначение элемента;
  • тип изменения сопротивления;
  • материал изготовления;
  • вид проводника в элементе;
  • ВАХ – вольт-амперная характеристика;
  • способ монтажа.

Устройства делятся на элементы общего и специального назначения. У специальных деталей повышенные характеристики сопротивления, частоты, рабочего напряжения или особые требования к точности.

Тип изменения сопротивления делит их на постоянные и переменные. Переменные резисторы конструктивно отличаются не только от элементов, имеющих постоянное сопротивление, но и между собой. Они различны по конструкции: бывают регулировочные и подстроечные.

Регулировочные элементы переменного типа предназначены для частого изменения сопротивления. Это входит в процесс работы схемы устройства.

Подстроечный тип предназначен для того, чтобы выполнить подстройку и регулировку схемы при первичном запуске. После этого изменение положения регулятора не выполняют.

При изготовлении резистивных тел (рабочей поверхности) используются такие материалы, как:

  • графитовые смеси;
  • металлопленочные (окисные) ленты;
  • проволока;
  • композиционные компоненты.

Особое место занимают в этом ряду интегральные элементы. Это резисторы, выполненные в виде p-n перехода, который представляет собой зигзагообразный канал, интегрируемый в кристалл микросхемы.

Внимание! Интегральные элементы всегда отличаются повышенной нелинейностью своей ВАХ. Поэтому они применяются там, где использование других типов не представляется возможным

Вид вольт-амперной характеристики делит рассматриваемые элементы на линейные и нелинейные. Особенность нелинейности заключается в том, что компонент меняет своё сопротивление в зависимости от следующих характеристик:

  • напряжения (варисторы);
  • температуры (терморезисторы);
  • уровня магнитного поля (магниторезисторы);
  • величины освещённости (фоторезисторы);
  • коэффициента деформации (тензорезисторы).

Нелинейность вольт-амперной характеристики расширило возможности их применения.

Способ монтажа может быть:

  • печатным;
  • навесным;
  • интегрированным.

При печатном монтаже выводы детали вставляются в отверстие на плате, после чего припаиваются к контактной дорожке панели. Такой способ установки автоматизирован, и пайка происходит путём погружения контактных площадок в ванну с припоем.

Навесной монтаж, в большинстве своём, ручной. Выводы соединяемых деталей сначала скручиваются между собой, потом спаиваются для улучшения контакта. Сама пайка не предназначена для выдерживания механических нагрузок.

Интегрированный монтаж проводится в процессе изготовления кристаллов микросхем.

Электромагнитная индукция (самоиндукция)

Начнем с электромагнитной индукции. Это явление описывает закон электромагнитной индукции Фарадея. Физический смысл этого явления состоит в способности электромагнитного поля наводить ЭДС в находящемся рядом проводнике. При этом или поле должно изменяться, например, по величине и направлению векторов, или перемещаться относительно проводника, или должен двигаться проводник относительно этого поля. На концах проводника в этом случае возникает разность потенциалов.

Есть и другое похожее по смыслу явление — взаимоиндукция. Оно заключается в том, что изменение направления и силы тока одной катушки индуцирует ЭДС на выводах расположенной рядом катушки, широко применяется в различных областях техники, включая электрику и электронику. Оно лежит в основе работы трансформаторов, где магнитный поток одной обмотки наводит ток и напряжение во второй.

В электрике физический эффект под названием ЭДС используется при изготовлении специальных преобразователей переменного тока, обеспечивающих получение нужных значений действующих величин (тока и напряжения). Благодаря явлениям индукции и самоиндукции инженерам удалось разработать множество электротехнических устройств: от обычной катушки индуктивности (дросселя) и вплоть до трансформатора.

Понятие взаимоиндукции касается только переменного тока, при протекании которого в контуре или проводнике меняется магнитный поток.

Для электрического тока постоянной направленности характерны другие проявления этой силы, такие, например, как разность потенциалов на полюсах гальванического элемента, о чем мы расскажем далее.

Электродвигатели и генераторы

Тот же электромагнитный эффект наблюдается в конструкции асинхронного или синхронного электродвигателя, основной элемент которых — это индуктивные катушки. О его работе доступным языком рассказывается во многих учебных пособиях, относящихся к предмету под названием «Электротехника». Для понимания сути происходящих процессов достаточно вспомнить, что ЭДС индукции наводится при перемещении проводника внутри другого поля.

По упомянутому выше закону электромагнитной индукции, в обмотке якоря двигателя во время работы наводится встречная ЭДС, которую часто называют «противо-ЭДС», потому что при работе двигателя она направлена навстречу приложенному напряжению. Это же объясняет резкое возрастание тока, потребляемого двигателем при повышении нагрузки или заклинивании вала, а также пусковые токи. Для электрического двигателя все условия появления разности потенциалов налицо – принудительное изменение магнитного поля ее катушек приводит к появлению вращающего момента на оси ротора.

В другом электротехническом устройстве – генераторе, все обстоит точно так же, но происходящие в нем процессы имеют обратную направленность. Через обмотки ротора пропускают электрический ток, вокруг них возникает магнитное поле (могут использоваться постоянные магниты). При вращении ротора поле, в свою очередь, наводит ЭДС в обмотках статора — с которых снимают ток нагрузки.

Еще немного теории

При проектировании таких схем учитываются распределение токов и падение напряжения на отдельных элементах. Для расчета распределения первого параметра применяется известный из физики второй закон Кирхгофа — сумма падений напряжений (с учетом знака) на всех ветвях замкнутого контура, равна алгебраической сумме ЭДС ветвей этого контура), а для определения их величин используют закон Ома для участка цепи или закон Ома для полной цепи, формула которого приведена ниже:

I=E/(R+r),

где E – ЭДС, R – сопротивление нагрузки, r – сопротивление источника питания.

Внутреннее сопротивление источника питания — это сопротивление обмоток генераторов и трансформаторов, которое зависит от сечения провода, которым они намотаны и его длины, а также внутреннее сопротивление гальванических элементов, которое зависит от состояния анода, катода и электролита.

При проведении расчетов обязательно учитывается внутреннее сопротивление источника питания, рассматриваемое как параллельное подключение к схеме

При более точном подходе, учитывающем большие значения рабочих токов, принимается во внимание сопротивление каждого соединительного проводника

Оцените статью
Рейтинг автора
5
Материал подготовил
Илья Коршунов
Наш эксперт
Написано статей
134
Добавить комментарий