Мини-гидроэлектростанция для частного дома своими руками

Простая альтернатива

Мини-гидроэлектростанции – вообще одно из лучших решений по вопросу альтернативных источников получения электричества. Их можно установить в загородном доме, на даче. Минус подобных сооружений в том, что их возведение возможно только в определенных условиях – необходимо наличие водяного потока. К тому же возведение данной конструкции у себя во дворе требует разрешения местных органов власти. Принцип работы мини-гидроэлектростанции для дома достаточно прост. На турбину падает вода, заставляя вращаться лопасти. Они, в свою очередь, за счет крутящего момента или перепада давления приводят в движение гидропривод. От него передается полученная мощность на электрогенератор, который и вырабатывает электричество.

В настоящее время схема ГЭС чаще всего укомплектовывается системой управления. Это позволяет конструкции работать в автоматическом режиме. В случае необходимости (к примеру, аварии) имеется возможность перехода на ручное управление.

Для строительства ГЭС достаточно даже небольшого ручья, протекающего по участку.

Но, как видим, инженеры придумали электростанцию и в бытовом водоводе.

Кстати, мини-гидроэлектростанции можно установить даже в канализационной трубе. Но их строительство требует создания определенных условий. Помимо естественного уклона необходим подходящий диаметр трубы.

Преимущества и недостатки

Гидроэнергетика обладает неоспоримыми преимуществами:

  • Чистота электроэнергии. Она вырабатывается при абсолютном отсутствии вредных выбросов.
  • Возможность строительства мощных электростанций при соответствующих природных условиях.
  • Гибкость производства. Система плотин позволяет регулировать интенсивность потока воды и конечную выработку электроэнергии. Электростанции легко адаптируются к уровню энергопотребления.
  • Высокая безопасность. Так как ГЭС не используют ископаемое или ядерное топливо, внутри этих станций нет риска взрыва с тяжелыми последствиями.

Недостатки гидроэнергетики:

  • Высокий уровень инвестиций в строительство.
  • Неблагоприятное воздействие на окружающую природу. Возведение гидроэлектростанций плотинного типа нарушает естественную экосистему, так как затапливаются огромные участки суши. Строительство вблизи ГЭС линий электропередачи, новых дорог, прокладка кабелей также оказывает влияние на ландшафт.
  • Необходимость иметь адекватные природные условия: значительный перепад воды в реках, выраженные приливные явления. Большинство мест, пригодных для строительства мощных гидроэлектростанций, уже использованы.
  • В отдельных районах имеется риск засухи. Длительное отсутствие осадков не очень предсказуемо, иногда может привести к полному прекращению выработки электроэнергии и способно вызвать проблемы в энергосистеме.

Мини-гидроэлектростанция своими руками

Построить водяную станцию для получения электроэнергии можно самостоятельно. Для частного дома достаточно двадцати киловатт в сутки. С таким значением справится даже мини-ГЭС, собранная своими руками. Но при этом следует помнить, что данный процесс характеризуется рядом особенностей:

  • Точные расчеты провести достаточно трудно.
  • Размеры, толщина элементов выбирается «на глаз», только опытным путем.
  • Самодельные сооружения не имеют защитных элементов, что приводит к частым поломкам и связанным с этим затратам.

Поэтому если нет опыта и определенных знаний в данной сфере, лучше отказаться от идеи подобного рода. Дешевле может оказаться приобретение уже готовой станции.

Если все же решаетесь делать все своими руками, то начинать необходимо с измерения скорости потока воды в реке. Ведь от этого зависит мощность, которую можно получить. Если скорость будет меньше одного метра в секунду, то строительство мини-гидроэлектростанции в данном месте не оправдает себя.

Еще один этап, который нельзя опускать – это расчеты. Необходимо тщательно рассчитать размер затрат, которые уйдут на строительство станции. В результате может оказаться, что гидроэлектростанция – не лучший вариант

Тогда стоит обратить внимание на другие виды альтернативной электроэнергии

Мини-гидроэлектростанция может стать оптимальным решением в вопросе экономии затрат на электроэнергию. Для ее строительства необходимо наличие реки недалеко от дома. В зависимости от желаемых характеристик можно подобрать подходящий вариант ГЭС. При правильном подходе выполнить подобное сооружение можно даже своими руками.

Дальнейшее усовершенствование в проекте

Дальнейшее усовершенствование водяного колеса должны затронуть:

  • Построить мини-дамбу для увеличения напора воды. При этом полностью речку не планируется перегораживать, чтобы рыба могла уходить во втором потоке.
  • Под дамбой установить трубу, по которой вода будет поступать на самодельную турбину. В трубе устроить кожух из транспортерной резиновой ленты. Перекрыв поток воды через трубу можно провести обслуживание механизмов.
  • По расчетам, турбина будет выдавать мощность примерно в два раза больше, чем водяное колесо. Кроме того, замена водяного колеса на турбину должна снять проблему замерзания в зимнее время.
  • Поток воды будет раскручивать турбину, передавая крутящий момент генератору. Держаться турбина будет на двух подшипниках, изготовленных из массива дерева. При регулярном смазывании они прослужат долго. Упорная шайба будет удерживать механизм от бокового смещения.
  • Изготовить металлические лопатки, рассчитав угол, под которым их нужно загнуть (от этого параметра зависит мощность гидроэлектростанции). Лопатки прикрутить нужно будет с использованием резиновых прокладок, чтобы избежать их отрыва.
  • Для передачи крутящего момента использовать собранный из труб вал.
  • Установить генератор. На генератор поставить шкив меньшего размера, чем установленный на валу. Это позволит повысить обороты, что необходимо для эффективной работы генератора.

Генератор должен выдавать порядка 600 Вт электроэнергии. Это даст возможность подключать бытовую технику. Если следующий этап эксперимента завершится удачно, можно будет подумать о дальнейшей модернизации с тем, чтобы вырабатывать несколько киловатт электроэнергии. Поскольку тарифы на электроэнергию в последнее время начали расти, все большую актуальность среди населения приобретают возобновляемые источники электроэнергии, позволяющие получать электричество практически бесплатно. Среди известных человечеству подобных источников стоит выделить солнечные батареи, ветрогенераторы, а также домашние гидроэлектростанции. Но последние являются достаточно сложными, ведь работать им приходится в очень агрессивных условиях. Хотя это вовсе не говорит, что мини-ГЭС своими руками соорудить невозможно.

Чтобы сделать все правильно и качественно, главное – подобрать правильные материалы. Они должны обеспечивать максимальную долговечность работы станции. Создаваемые своими руками домашние гидрогенераторы, мощность которых сравнима с аналогичной у солнечных батарей и ветряков, могут производить гораздо больший объем энергии. Но хотя от материалов и зависит многое, на них все не заканчивается.

МИНИ-ГЕНЕРАТОР

Процесс создания устройства состоит из двух частей: выбора материалов и собственно самого производства.

МАТЕРИАЛЫ

Поиск материалов для строительства простейшего водородного аппарата не должен составить больших трудностей.

Ниже приводится список необходимого:

  • источник питания (1-2 ампера и 12 вольт);
  • стеклянная пол-литровая емкость с навинчивающейся крышкой;
  • литровая пластиковая бутылка;
  • пластмассовая прямоугольная 10-15 сантиметровая линейка;
  • лезвия бритвы в виде пластинок;
  • две медицинских капельницы для переливания;
  • медные провода малого сечения;
  • поваренная соль и вода.

Помимо материалов понадобится кое-какой инструментарий:

  • нож канцелярского типа;
  • наждачка;
  • паяльник с комплектом для пайки;
  • клеевой пистолет.

ПРОЦЕСС ИЗГОТОВЛЕНИЯ

Как сделать генератор водорода своими рукамиКак сделать генератор водорода своими руками

Изготовить генератор водорода своими руками можно согласно указанной ниже инструкции:

  1. Прежде всего, приготовим лезвия. Для этого нужно зачистим их с одной стороны по неострым краям (на 2-3 миллиметра). Далее лезвия подвергаем лужению.
  2. Через каждые 3-4 миллиметра делаем на линейке пазы для лезвий. Увеличение дистанции между засечками влечет рост потребления тока, а значит, понадобится более мощное питание.
  3. Все лезвия устанавливаем перпендикулярно по отношению к плоскости линейки. Фиксируем их клеем, но таким образом, чтобы не допустить электрического контакта. Внешне конструкция будет напоминать ребристую батарею.
  4. Вслед за высыханием клея нужно добавить новые элементы. Для этого присоединяем к двум проводам лезвия: к одному четные, к другому — нечетные. Это похоже на то, как выглядят пластинки в аккумуляторах.
  5. Сверлим в металлической крышке три отверстия: два — под провода, и третье (чуть большего диаметра) — для транспортировки газа. Точный диаметр третьего отверстия определяется исходя из размерности капельницы, фильтр которой позднее вставим в крышку.
  6. Линейку с установленными в ней лезвиями фиксируем на внутренней плоскости металлической крышки.
  7. После того как вставили провода и капельницу, обрабатываем отверстия клеем, с тем, чтобы закрепить элементы. После закручивания крышка должна покрывать емкостью с полной герметичностью.
  8. Далее понадобится барботер гидрозатвор. Для этого используем пластиковую бутылку. Шланг от банки, пускаем через крышку. Шланг должен дойти до днища бутылки. Второй шланг (через который будет отводиться газа), должен находиться вверху. Не забываем о герметичности мест соединения.
  9. Заливаем воду в пластиковую бутылку (не под самую пробку) и в стеклянную банку. В банку добавляем несколько столовых ложек соли и перемешиваем.
  10. Тщательно закрываем крышки.

Водородный генератор готов. Можно приступать к проверке его работоспособности. После подключения прибора к электросети можно увидеть гидролизный процесс, в результате которого выделяется газ. Если поднести зажженную зажигалку к шлангу на выходе из аппарата, горелка загорится.

Приведенный выше пример генератора — лишь маленькая тестовая модель, которая, однако, показывает принцип работы системы и практическую возможность изготовления генератора своими руками. Ниже рассмотрим создание более серьезного водородного аппарата, который действительно можно использовать в хозяйстве.

Что нужно запомнить

Принцип работы

Принцип работы волновой электростанции основан на преобразовании кинетической энергии волн в электрическую. Существует несколько способов устройства подобных станций различных по принципу работы и конструкции.

  1. Принцип «осциллирующего водяного столба». В этом конструктивном варианте волны,
    осуществляя толчковые движения, заполняют собой специально изготовленные камеры, в которых содержатся воздушные массы. Воздух сжимается, создается избыточное давление, под действием которого он поступает на турбину, вращая ее лопастные механизмы. Вращательное движение турбины передается на генератор, который вырабатывает электрический ток.
  2. Принцип «колеблющегося тела». На принципе «колеблющегося тела» работают разнообразные буи, «морские змеи» и др. В этом варианте конструкции несколько секций соединяются в конвертер, между которыми на подвижных платформах монтируются гидравлические поршни. К поршню (группе поршней) подсоединён гидравлический двигатель, он приводит во вращательное движение электрический генератор. Под раскачивающимся действием волн конвертер приводит в движение поршни, а они, в свою очередь, приводят в работу гидравлический двигатель и соответственно генератор.
  3. Установка с «искусственным атоллом». Это бетонное сооружение состоит из корпуса, на которомразмещается поверхность для наката волн. В средней части располагается накопительный резервуар (бассейн). Из него через приёмное отверстие вода поступает на гидротурбину. Генератор устанавливается в верхней части сооружения. Для поднятия воды в бассейн, который расположен выше уровня моря, используют эффект «набегания волны» на специальную наклонную поверхность.

Технические характеристики заводских микро-ГЭС

Каких-то общепринятых стандартов, жёстко регламентирующих границу между микро-ГЭС и мини-ГЭС, не существует. Определяющим параметром микро-ГЭС для частника будет производительность до 5 кВт. Однако расход воды чрезвычайно сильно сказывается на эффективности работы всей энергосистемы в целом.

Мощность самых дешёвых микро-ГЭС начинается от 0,6 кВт при цене 39 т.р.

Но 600 ватт это всё таки маловато для частного дома. Начинать надо от 1-1,5 кВт, и вот три устройства разных конструкции, с более высокой производительностью:

1.С турбиной Каплана цена 57 т.р.

2.С турбиной Тюрго, аналогичной стоимости.

3.С трубчатой турбиной и ценой 129,5 т.р.

Даже при беглом сравнении, микро-ГЭС с трубчатой турбиной дороже на 120%. Причину такого несоответствия можно увидеть, если сравнить несколько устройств в таблице:

Мощность, кВт Расход, л/с Высота, м Масса, кг Цена, т.р.
Турбина Тюрго 1,5 10-18 12-28 49 57,3 Все параметры генерируемого электричества, для одинаковых по мощности устройств совпадают:

220 вольт, 1 фаза, частота 50/60 Гц.

Производитель из Новосибирска

Турбина Тюрго 3 11-13 15-30 72 68
Турбина Каплана 1,5 40-45 2-3 30 57,3
Турбина Каплана 3 90-150 3-6 85 68
Трубчатая турбина 1,5 40-45 5-10 Нет данных 129,5
Трубчатая турбина 3 90-140 5-10 138
«Шар-булак» 1,7 20 6-7 ≈105 т.р. 220 V/ 50 Гц/ синусоида производится в Бишкеке

Турбина Тюрго

Микро-ГЭС изготовленные в промышленных условиях, априори будут надёжнее собранных кустарно. Можно взять за образец заводскую модель, и просто скопировать её. Такой подход принесёт моральное удовлетворение, но обойдётся дороже хотя бы потому, что при потоковом производстве комплектующих деталей, они обходятся гораздо дешевле.

Однако это не исключает возможности собрать микро-ГЭС в гараже или домашней мастерской, и даже поставить этот процесс на поток. Примерно такой подход наблюдается на одной фирме в Киргизии.

Бишкекская фирма выпускает три разновидности мобильных ГЭС, мощностью:

1 кВт;

1,7 кВт;

5 кВт.

Вид этих приборов затрапезный, но свою функцию они выполняют.

Принцип действия

Принцип действия микро — ГЭС аналогичен действию больших и малых гидроэлектростанций. Разница заключается лишь в мощности установленного оборудования и количества вырабатываемой электрической энергии.
Производство электрического тока осуществляет генератор, вращательное движение ротора которому, передается с гидравлической турбины.
Для того, чтобы турбина пришла во вращательное движение, создается напор воды, на водоеме, где установлена мини ГЭС. Это может быть напор, создаваемый естественным течением водных масс, либо создаваемый путем строительства плотины или иного технического сооружения. В определенных случаях, могут быть использованы оба способа создания напора одновременно.
Под действием напора, потоки воды устремляются в требуемом направлении, в створе их движения монтируется турбина, на лопасти которой и поступает энергия движущихся водных масс. Эта кинетическая энергия воды, преобразуется турбиной, во вращательное движение, которое посредством механической передачи (редуктор) и передается на вал генератора.

Источником энергии могут служить:

  • реки различных размеров и интенсивности течения и ручьи,
  • перепады высот на водосбросах водоемов различного назначения;
  • технологические водотоки;
  • перепады высот на трубопроводах различного назначения.

В зависимости от вида используемого оборудования и способа его установки, принцип работы гидроэлектростанции, может различаться. Это могут быть следующие варианты:

  1. Принцип «водяного колеса» – при этом варианте, приемное колесо частично погружается в воду параллельное ее поверхности. Водные потоки, перемещаясь по естественному руслу, давят на лопасти, размещенные на колесе, и приводят его во вращение. Колесо, в свою очередь, посредством редуктора и прочих механических устройств, создает вращательное движение генератора.
  2. Конструкция в виде гирлянды – с противоположных берегов монтируется трос, на котором установлены специальные роторы. Вода, перемещаясь вращает роторы, вращательное движение которых передается на трос. Трос вращаясь, передает вращательное движение на генератор, установленный на берегу.
  3. С использованием ротора Дарье – в принцип работы турбины, заложено использование разности давлений на лопастях ротора.
  4. С использованием принципа пропеллера – лопасти устройства помещены в воду и под воздействие воды приходят во вращательное движение, которое и передается на вал генератора, вырабатывающего электрический ток.

Преимущества использования микро — ГЭС:

  • Отсутствует необходимость в изменении естественного ландшафта местности;
  • На качество воду не оказывается стороннее воздействие, она сохраняет свои свойства;
  • Не зависимость от воздействия природных явлений;
  • Возможность использования в круглогодичном цикле работы;
  • Нет необходимости в строительстве дорогостоящих гидротехнических сооружений.

Конструкция гидроэнергоблока Ленева:

Мини-ГЭС – гидроэнергоблок Ленева представляет собой систему (два ряда) лопастей прямоугольной формы (плоская пластинка) оси которых делят их на две (1/2) не равные части, большая из которых всегда (за счёт действия потока) находится за осью дальше по потоку. Тем самым достигается минимальное её вращение вокруг своей оси и, следовательно, наименьшие турбулентные завихрения.

  

Оси лопастей, своей верхней и нижней частями, в свою очередь, закреплены на верхней и нижней, замкнутых в кольца – цепях ПРЛ (либо на любом другом гибком элементе). Цепи передают усилие через звёздочки (рабочие колёса) на два вертикальных вала, с которых механическая энергия движущейся среды (воды, воздуха и т.д. и т.п.) через гибкую муфту и промежуточный вал передаётся на валы электрогенераторов. Валы установки через подшипники скольжения (качения) жёстко закреплены на каркасе гидроэнергоблока, имеющим закрытые на 2/3 боковые и глухую нижнюю стенки, что не препятствует поступлению дополнительной воды из окружающего потока через верх и 1/3 боковых стенок гидроэнергоблока.

В одном каркасе рационально размещать минимум три блока установки мини-ГЭС.

Положение лопастей по отношению к основному потоку регулируется неподвижными направляющими для цепи и подвижными для большей из сторон лопасти, а, меняя расстояние между подвижной направляющей для лопасти и неподвижной для цепи, мы задаем необходимый угол поворота между лопастью и направлением основного потока от 0 до 45, добиваясь тем самым оптимального режима работы гидроэнергоблока либо останавливая её полностью. Таким образом, поток воздействует на лопасть фактически перпендикулярно, под 90. Один из валов гидроэнергоблока имеет натяжное устройство, регулирующее натяжение цепей. Лопасти должны иметь свободу вращения на своих осях, а оси так же свободно вращаться в креплениях к цепям. Между лопастью и местом крепления к цепи на осях должны устанавливаться ролики, которые и будут катиться по неподвижным направляющим, удерживая тем самым цепь постоянно в перпендикулярном положении относительно направления основного потока.

Размеры блоков мини-ГЭС не ограничены. Определяются требуемой мощностью и размерами реки. Как пример, возьмём: ширина – 1200 мм, глубина – 700 мм, длина – 1250 мм, т.е. объём – 1 м3. Он позволяет разместить в нём 3 установки с 17 лопастями в каждой, имеющих, в свою очередь: ширину – 150 мм и глубину – 500 мм, т.е. каждая площадью – 0,075 м2. Так как две лопасти всегда будут находиться на поворотах, тогда общая рабочая площадь одной установки гидроэнергоблока – 1,125 м2, сумма 3-х установок мини-ГЭС в одном каркасе (1 м3 потока) будет – 3,375 м2!!!

Частота вращения валов – всего 30-60 оборотов в минуту.

Именно такая конструкция гидроэнергоблока позволяет наиболее полно использовать каждый кубический метр потока движущейся среды, возникающие центробежное и центростремительное ускорения, значительно увеличивающие как скорость движения потока, так и действие силы тяжести разделённого на секции потока движущейся среды, в нашем случае – реки.

Материалоёмкость одного киловатта мини-ГЭС в зависимости от используемых материалов на изготовление будет варьироваться от нескольких сот грамм (пластмасса, сверхвысокомолекулярный полиэтилен) до 2-3 кг (сталь) на 1 кВт установленной мощности.

Резервуарный гидротаранный электрогенератор:

Резервуарный гидротаранный электрогенератор представляет собой герметичный резервуар с прочным металлическим корпусом цилиндрической формы, в котором размещены «подводный гидротаран» и генератор электрического тока в виде встроенного специального преобразователя электрической энергии.

Подводный гидротаран для обеспечения своей работы не требует какого-либо ископаемого топлива или какой-либо дополнительной подведенной энергии.

Резервуарный гидротаранный электрогенератор работает в вертикальном положении с допустимым отклонением от вертикальной оси, не превышающем 50о.

Резервуарный гидротаранный электрогенератор при использовании специального преобразователя кинетической энергии выходной струи воды в электрическую энергию не содержит каких-либо ломающихся вращающихся и возвратно-поступающих деталей. В связи с этим резервуарный гидротаранный электрогенератор может работать и генерировать экологически чистую электроэнергию в течение не менее 10 лет. Работоспособность резервуарного гидротаранного электрогенератора не зависит от времени суток, климатических и погодных условий, наличия солнца и ветра.

Зависимость выходной мощности генерируемого электрического тока N от диаметра резервуарного гидротаранного электрогенератора D приведена ниже.

S=0,785D2 (m2)

L=5D (m)

N/S = 39800 (KW/m2)

Резервуарный гидротаранный электрогенератор диаметром 200 мм будет иметь мощность генерируемой электроэнергии до 1250 КВт при выходном напряжении 200 – 50 000 вольт, массе не более 230 кг и длине 0,8 м. Резервуарный гидротаранный электрогенератор диаметром 40 мм будет иметь мощность до 50 КВт при массе не более 1,8 кг и длине 200 мм.

Водородный генератор для автомобиля

Процесс электролиза в автомобильном электролизере осуществляется с использованием специального катализатора. При работе прибора происходит выделение оксигидрогена (газ Брауна), имеющего формулу ННО. Далее газ через систему подачи воздуха двигателя попадает в его камеру сжигания, где смешивается с топливом и сгорает. В результате повышается октановое число топливо-воздушной смеси, что способствует более полному сгоранию топлива.

Генератор водорода своими рукамиГенератор водорода своими руками

Устройство современных электролизеров

Генератор газа Брауна включает в себя:

  • собственно электролизер;
  • емкость для циркуляции.

Весь процесс получения газа контролируется:

  • модулятором тока;
  • оптимизатором, контролирующим соотношение газа Брауна и топливно-воздушной смеси.

Виды катализаторов

Существует несколько видов катализаторов, среди которых различают:

  • Цилиндрические – их конструкция мало чем отличается от конструкции простейшего водородного генератора и его вполне возможно изготовить самостоятельно. Отличаются небольшой производительностью (до 0,7 л газа в минуту) и примитивной схемой управления.
  • С раздельными ячейками – самая эффективная конструкция с производительностью свыше 2 л газа в минуту. Отличается высоким КПД и устанавливается на автомобили с непрерывным режимом работы.
  • С открытыми пластинами (сухие) – производительностью до 2,1 л газа в минуту. Конструкция обеспечивает дополнительное охлаждение устройства в тяжелых условиях эксплуатации.

Все процессы, происходящие в водородном генераторе, осуществляются в автоматическом режиме и функционируют в соответствии со специальной программой, вшитой в компьютерную систему управления автомобилем.

Преимущества

Использование современных электролизеров в автомобиле позволяет:

  • экономить до 50% горючего;
  • уменьшить токсичность выхлопа;
  • снизить температуру мотора;
  • повысить тягу и мощность силового агрегата;
  • увеличить срок эксплуатации двигателя.

Принцип работы водородного генератора

Самая простая печь-барбекю своими руками за 15 минут — видеоурок для новичка

Технические компоненты установки для отопления

Котел – это самый главный элемент, в котором происходит процесс выработки водорода. В котел входят такие конструктивные единицы, как:

  • Электролизер – прибор, где собственно и происходит реакция электролиза, в результате которой вода распадается на кислород и водород. Его полость заполняется водой, в которую помещены металлические пластины, обладающие наивысшей проводимостью тока. К ним подсоединены специальные проводки, по которым подается ток.
  • Клапан горелки – располагается вверху устройства, чтобы полученному газу было легче преодолевать барьер и поступать непосредственно в горелку.
  • Горелка – элемент, в который подается искра и полученный газ начинает гореть, выделяя тепло.

Трубы – обеспечивают подачу тепла через нагрев воды, которое позволяет обогреть весь дом.

Оцените статью
Рейтинг автора
5
Материал подготовил
Илья Коршунов
Наш эксперт
Написано статей
134
Добавить комментарий