Все о законе ома: простыми словами с примерами для “чайников”

Источник ЭДС в полной цепи

Для возникновения электрического тока в замкнутой цепи, эта цепь должна содержать хотя бы один особый элемент, в котором будет происходить работа по переносу зарядов между его полюсами. Силы, переносящие заряды внутри этого элемента, делают это против электрического поля, а значит, их природа должна быть отлична от электрической. Поэтому такие силы называются сторонними.

Рис. 1. Сторонние силы в физике.

Элемент электрической цепи, в котором происходит работа сторонних сил по переносу зарядов против действия электрического поля, называется источником тока. Главная его характеристика – это величина сторонних сил. Для ее характеристики вводится специальная мера – Электродвижущая Сила (ЭДС), она обозначается буквой $\mathscr{E}$.

Значение ЭДС источника тока равно отношению сторонних сил по переносу заряда к величине этого заряда:

$$\mathscr{E}={A_{ст}\over q}$$

Поскольку смысл ЭДС очень близок к смыслу электрического напряжения (напомним, напряжение – это отношение работы, совершаемой электрическим полем, переносящим заряд, к величине этого заряда), то ЭДС так же, как и напряжение, измеряется в Вольтах:

$$1В={Дж\overКл}$$

Второй важнейшей электрической характеристикой реального источника тока является его внутреннее сопротивление. При переносе зарядов между клеммами происходит их взаимодействие с веществом источника ЭДС, а поэтому, источник для электрического тока также представляет некоторое сопротивление. Внутреннее сопротивление, как и обычное сопротивление, измеряется в Омах, но обозначается малой латинской буквой $r$.

Рис. 2. Примеры источников тока.

Законы постоянного тока. Формулы

Определение 4

Постоянный электрический ток создается в замкнутой цепи, где свободные носители заряда проходят по замкнутым траекториям.

Разные точки цепи обладают неизменным по времени электрическим полем, исходя из основных законов постоянного тока. То есть в такой цепи оно ассоциируется с замороженным электростатическим полем. Когда электрический заряд перемещается по замкнутой траектории, то работа сил равняется нулю.

Определение 5

Чтобы постоянный ток имел место на существование, нужно наличие такого устройства в цепи, которое будет создавать и поддерживать разности потенциалов разных участков цепи при помощи работы сил неэлектростатического происхождения. Их называют источниками постоянного тока. Такие силы, действующие на свободные носители заряда со стороны источников тока, получили название сторонних сил.

Их природа различна. Гальванические элементы или аккумуляторы обладают сторонними силами, возникающими по причине электрохимических процессов. В генераторах это обстоит по-другому: появление сторонних сил возможно при движении проводников в магнитном поле. Источник тока сравним с насосом, перекачивающим жидкость замкнутой гидравлической системы. Электрические заряды внутри источника под действием сторонних сил движутся против сил электростатического поля. Именно поэтому замкнутая цепь может обладать постоянным током.

Перемещаясь по цепи постоянного тока, электрические заряды сторонних сил действуют на источники тока, то есть совершают работу.

Определение 6

Физическую величину, равную отношению сторонних сил Aст при перемещении заряда q от отрицательного полюса источника к положительной величине этого заряда, называют электродвижущей силой источника (ЭДС):

ЭДС=δ=Aстq.

Отсюда следует, что ЭДС определяется совершаемой сторонними силами работой при перемещении единичного положительного заряда. ЭДС измеряется в вольтах (В).

Если по замкнутой цепи движется единично положительный разряд, то работа сторонних сил равняется сумме ЭДС, которая действует в данной цепи с работой электростатического поля, имеющего значение .

Определение 7

Цепь с постоянной величиной тока следует разбивать на участки. Если на них отсутствует действие сторонних сил, тогда участки называют однородными, если присутствуют, то неоднородными.

Когда единичный положительный заряд перемещается по определенному участку цепи, то работу совершают кулоновские и сторонние силы. Запись работы электростатических сил равняется разности потенциалов ∆φ12=φ1-φ2 начальной и конечной точек неоднородного участка. Работу сторонних сил приравнивают к электродвижущей данного участка по закону Ома. Тогда полная работа запишется как:

U12=φ1-φ2+δ12.

Величина U12 называется напряжением участка цепи 1-2. Если данный участок однородный, тогда напряжение фиксируется как разность потенциалов:

U12=φ1-φ2.

В 1826 году Г. Ом с помощью эксперимента установил, что сила тока I, текущая по однородному металлическому проводнику (отсутствие действия сторонних сил), пропорциональна напряжению на U концах проводника.

I=1RU или RI=U, где R=const.

Определение 8

R называют электрическим сопротивлением.

Проводник, имеющий электрическое сопротивление, получил название резистора.

Связь между R и I говорит о формулировке законе Ома для однородного участка цепи: сила тока в проводнике прямо пропорциональна приложенному напряжению и обратно пропорциональна сопротивлению.

Обозначение сопротивления по системе СИ выражается омами (Ом).

Если на участке цепи имеется сопротивление в 1 Ом, тогда при напряжении 1 В во время измерения возникает ток силой 1 А.

Слишком сложно?
Не парься, мы поможем разобраться и подарим скидку 10% на любую работу

Опиши задание

ПРИМЕРЫ ЗАДАНИЙ

Часть 1

1. На рисунке приведена схема электрической цепи, состоящей из источника тока, ключа и двух параллельно соединённых резисторов. Для измерения напряжения на резисторе ​\( R_2 \)​ вольтметр можно включить между точками

1) только Б и В
2) только А и В
3) Б и Г или Б и В
4) А и Г или А и В

2. На рисунке представлена электрическая цепь, состоящая из источника тока, резистора и двух амперметров. Сила тока, показываемая амперметром А1, равна 0,5 А. Амперметр А2 покажет силу тока

1) меньше 0,5 А
2) больше 0,5 А
3) 0,5 А
4) 0 А

3. Ученик исследовал зависимость силы тока в электроплитке от приложенного напряжения и получил следующие данные.

Проанализировав полученные значения, он высказал предположения:

А. Закон Ома справедлив для первых трёх измерений.
Б. Закон Ома справедлив для последних трёх измерений.

Какая(-ие) из высказанных учеником гипотез верна(-ы)?

1) только А
2) только Б
3) и А, и Б
4) ни А, ни Б

4. На рисунке изображён график зависимости силы тока в проводнике от напряжения на его концах. Чему равно сопротивление проводника?

1) 0,25 Ом
2) 2 Ом
3) 4 Ом
4) 8 Ом

5. На диаграммах изображены значения силы тока и напряжения на концах двух проводников. Сравните сопротивления этих проводников.

1) ​\( R_1=R_2 \)​
2) \( R_1=2R_2 \)​
3) \( R_1=4R_2 \)​
4) \( 4R_1=R_2 \)​

6. На рисунке приведена столбчатая диаграмма. На ней представлены значения мощности тока для двух проводников (1) и (2) одинакового сопротивления. Сравните значения напряжения ​\( U_1 \)​ и ​\( U_2 \)​ на концах этих проводников.

1) ​\( U_2=\sqrt{3}U_1 \)​
2) \( U_1=3U_2 \)
3) \( U_2=9U_1 \)
4) \( U_2=3U_1 \)

7. Необходимо экспериментально обнаружить зависимость электрического сопротивления круглого угольного стержня от его длины. Какую из указанных пар стержней можно использовать для этой цели?

1) А и Г
2) Б и В
3) Б и Г
4) В и Г

8. Два алюминиевых проводника одинаковой длины имеют разную площадь поперечного сечения: площадь поперечного сечения первого проводника 0,5 мм2, а второго проводника 4 мм2. Сопротивление какого из проводников больше и во сколько раз?

1) Сопротивление первого проводника в 64 раза больше, чем второго.
2) Сопротивление первого проводника в 8 раз больше, чем второго.
3) Сопротивление второго проводника в 64 раза больше, чем первого.
4) Сопротивление второго проводника в 8 раз больше, чем первого.

9. В течение 600 с через потребитель электрического тока проходит заряд 12 Кл. Чему равна сила тока в потребителе?

1) 0,02 А
2) 0,2 А
3) 5 А
4) 50 А

10. В таблице приведены результаты экспериментальных измерений площади поперечного сечения ​\( S \)​, длины ​\( L \)​ и электрического сопротивления ​\( R \)​ для трёх проводников, изготовленных из железа или никелина.

На основании проведённых измерений можно утверждать, что электрическое сопротивление проводника

1) зависит от материала проводника
2) не зависит от материала проводника
3) увеличивается при увеличении его длины
4) уменьшается при увеличении его площади поперечного сечения

11. Для изготовления резисторов использовался рулон нихромовой проволоки. Поочередно в цепь (см. рисунок) включали отрезки проволоки длиной 4 м, 8 м и 12 м. Для каждого случая измерялись напряжение и сила тока (см. таблицу).

Какой вывод можно сделать на основании проведённых исследований?

1) сопротивление проводника обратно пропорционально площади его поперечного сечения
2) сопротивление проводника прямо пропорционально его длине
3) сопротивление проводника зависит от силы тока в проводнике
4) сопротивление проводника зависит от напряжения на концах проводника
5) сила тока в проводнике обратно пропорциональна его сопротивлению

12. В справочнике физических свойств различных материалов представлена следующая таблица.

Используя данные таблицы, выберите из предложенного перечня два верных утверждения. Укажите их номера.

1) При равных размерах проводник из алюминия будет иметь меньшую массу и большее электрическое сопротивление по сравнению с проводником из меди.
2) Проводники из нихрома и латуни при одинаковых размерах будут иметь одинаковые электрические сопротивления.
3) Проводники из константана и никелина при одинаковых размерах будут иметь разные массы.
4) При замене никелиновой спирали электроплитки на нихромовую такого же размера электрическое сопротивление спирали уменьшится.
5) При равной площади поперечного сечения проводник из константана длиной 4 м будет иметь такое же электрическое сопротивление, что и проводник из никелина длиной 5 м.

Часть 2

13. Меняя электрическое напряжение на участке цепи, состоящем из никелинового проводника длиной 5 м, ученик полученные данные измерений силы тока и напряжения записал в таблицу. Чему равна площадь поперечного сечения проводника?

В дифференциальной форме

Формулу очень часто представляют в дифференциальном виде, поскольку проводник обычно неоднородный и потребуется разбить его на минимально возможные участки. Ток, проходящий через него, связан с величиной и направлением, поэтому считается скалярной величиной. Всякий раз, когда нужно найти результирующий ток через провод, берут алгебраическую сумму всех отдельных токов. Поскольку это правило действует только для скалярных величин, ток принимают также в качестве скалярной величины. Известно, через сечение проходит ток dI = jdS. Напряженье, на нем равняется Еdl, тогда для провода с постоянным сечением и равной протяженности будет верно соотношение:

Дифференциальная форма

Поэтому, выражение тока в векторном виде будет: j = E.

Важно! В случае металлических проводников с ростом температуры проводимость падает, а для полупроводников — растет. Омовский закон не демонстрирует строгую пропорциональность

Сопротивление большой группы металлов и сплавов исчезает при температуре, близкой к абсолютному нулю, а процесс называется сверхпроводимостью.

Как подобрать наушники, учитывая их сопротивление

Чтобы разобраться, как выбирать наушники на основе импеданса, обратите внимание на выходное напряжение устройства для прослушивания музыки. У телефона этот показатель находится в пределах 150–300 мВ, чего хватает для раскачки модели с сопротивлением до 100 Ом

Подключать к смартфону или плееру модель с большим импедансом бессмысленно. Исключением выступает наличие внешнего усилителя, способного увеличить напряжение.

Для компьютера распространяется аналогичное правило: нужно знать выходное напряжение на порте наушников или акустического оборудования, подключенного к ПК. Лучше, если на стационарной системе установлена отдельная звуковая карта: она выдаст большее напряжение, нежели интегрированный аналог.

Последовательное соединение резисторов

Рассмотрим электрическую цепь, в которой три резистора расположены последовательно, т.е. друг за другом. Общее их сопротивление (R) будет рано сумме сопротивлений отдельного резистора (r).

R=r1+r2+r3

Для наглядности примера, в качестве резисторов рассмотрим обычные 40 Вт лампы накаливании. В данном случае вольфрамовая нить обладает своим сопротивлением и ее вполне можно считать резистором. Также введем понятие мощности нагрузки или резистора (P), которая измеряется в ватах (Вт).

Она имеет прямолинейную зависимость от силы тока и напряжения и вычисляется по формуле: P=Iх UС помощью несложных вычислений мы можем найти силу тока на резисторе, в качестве которого выступает лампочка.

Сила тока (I) = Мощность лампы (Р) / Напряжение (U) = 40 Вт / 220 В = 0,1818 А.

Для последовательного соединения элементов в электрической цепи справедливо правило, что силы тока протекающие через все проводники одинакова. Таким образом сила тока в резисторе r2 или r3 также будет 0,1818 А. Но в нашем варианте с лампочками будет отмечена одна особенность – яркость свечения уменьшится. Это происходит из-за того, что резистор выступает в качестве делителя напряжения. Этот нюанс часто используют для продления срока службы не ответственных устройств. Например, впаяв сопротивление перед лампочкой можно продлить срок ее службы, но при этом придется смерится с недостатком освещенности.

Закон ома определение

Закон Ома для полной цепи: история и формулы.

Что же собой представляет закон Ома для полной цепи? Итак, это формула, в которой наглядно видна связь основных параметров электрической цепи: тока, напряжения и сопротивления. Для того чтобы понять суть закона, давайте для начала разберемся с некоторыми понятиями.

Что называют электрической цепью?

Электроцепь – это путь в электрической схеме, которым протекают заряды (электрические элементы, провода и другие устройства). Конечно же, ее началом считается источник электропитания. Под воздействием электромагнитного поля, фотонных явлений или химических процессов электрические заряды стремятся перейти на противоположную клемму этого источника электропитания.

Что такое электрический ток?

Направленное движение заряженных частиц при воздействии на них электрического поля либо других сторонних сил и называется электрическим током. Его направление определяется направленностью протонов (положительных зарядов). Ток будет постоянным, если с течением времени не изменилась ни его сила, ни направление.

История закона Ома

При проведении экспериментов с проводником физику Георгу Ому удалось установить, что сила тока пропорциональна напряжению, которое приложено к его концам:

I / sim U или I = G / U,

где G – электропроводность, а величина R = 1 / G – электрическое сопротивление проводника. Это открытие было установлено знаменитым немецким физиком в 1827 году.

Законы Ома

Для полной цепи определение будет следующим: сила тока в электроцепи равна отношению электродвижущей силы (далее ЭДС) источника к сумме сопротивлений:

I = E / (R + r),

где R – сопротивление внешней цепи, а r – внутреннее сопротивление источника тока. Довольно часто формулировка закона вызывает затруднения, поскольку не всем знакомо понятие ЭДС, ее отличие от напряжения, далеко не все знают, что означает и откуда появляется внутреннее сопротивление. Для этого и нужны пояснения, ведь закон Ома для полной цепи имеет глубокий смысл.

Формулировку закона для участка цепи можно назвать прозрачной. Речь идет о том, что для ее понимания не нужны дополнительные разъяснения: ток в цепи прямо пропорционален напряжению и обратно пропорционален сопротивлению:

I = U / R.

Смысл

Закон Ома для полной цепи прочно связан с законом сохранения энергии. Давайте предположим, что источник тока не имеет внутреннего сопротивления. Что же в таком случае должно происходить? Оказывается, если бы отсутствовало сопротивление, то во внешнюю цепь отдавался бы ток большей величины, соответственно и мощность была бы большей.

Теперь пришло время разобраться с понятием электродвижущей силы. Эта величина представляет собой разность между электрическими потенциалами на клеммах источника, но только без какой-либо нагрузки. В качестве примера давайте возьмем напор воды в приподнятом баке. Уровень воды будет находиться на месте, пока ее не начнут расходовать. При открытии крана уровень жидкости будет уменьшаться, поскольку нет подкачки. Попадая в трубу, вода испытывает сопротивление, то же самое происходит и с электрическими зарядами в проводе.

При отсутствии нагрузок, клеммы находятся в разомкнутом состоянии, получается, что ЭДС и напряжение совпадают по величине. Если же мы, к примеру, включим лампочку, цепь замкнется, а электродвижущая сила создаст напряжение в ней, выполняя полезную работу. Часть энергии из-за внутреннего сопротивления рассеется (это называют потерями).

В том случае, если сопротивление потребителя меньше внутреннего, то на источнике тока выделяется большая мощность. И тогда происходит падение ЭДС во внешней цепи, а на внутреннем сопротивлении теряется существенная часть энергии. Суть законов сохранения заключается в том, что природа не может взять больше, чем отдать.

Хорошо знакома сущность внутреннего сопротивления обитателям «хрущевок», у которых в квартирах имеются кондиционеры, а старая проводка так и не была заменена. Электрический счетчик вращается с бешеной скоростью, нагревается розетка и стена в тех местах, где проходят старые алюминиевые провода, в результате чего кондиционер еле-еле охлаждает воздух в помещении.

Природа r

«Полный Ом» (как привыкли закон называть электрики) плохо понимается, поскольку у внутреннего сопротивления источника, как правило, не электрическая природа. Давайте разберемся с этим на примере солевой батарейки. Известно, что электриче

Закон Ома для переменного тока

При расчете цепей переменного тока вместо понятия сопротивления вводят понятие «импеданс». Импеданс обозначают буквой Z, в него входит активное сопротивление нагрузки Ra и реактивное сопротивление X (или Rr). Это связано с формой синусоидального тока (и токов любых других форм) и параметрами индуктивных элементов, а также законов коммутации:

  1. Ток в цепи с индуктивностью не может измениться мгновенно.
  2. Напряжение в цепи с ёмкостью не может измениться мгновенно.

Таким образом, ток начинает отставать или опережать напряжение, и полная мощность разделяется на активную и реактивную.

U=I/Z

XL и XC – это реактивные составляющие нагрузки.

В связи с этим вводится величина cosФ:

Здесь – Q – реактивная мощность, обусловленная переменным током и индуктивно-емкостными составляющими, P – активная мощность (выделяется на активных составляющих), S – полная мощность, cosФ – коэффициент мощности.

Возможно, вы заметили, что формула и её представление пересекается с теоремой Пифагора. Это действительно так и угол Ф зависит от того, насколько велика реактивная составляющая нагрузки – чем её больше, тем он больше. На практике это приводит к тому, что реально протекающий в сети ток больше чем тот, что учитывается бытовым счетчиком, предприятия же платят за полную мощность.

При этом сопротивление представляют в комплексной форме:

Здесь j – это мнимая единица, что характерно для комплексного вида уравнений. Реже обозначается как i, но в электротехнике также обозначается и действующее значение переменного тока, поэтому, чтобы не путаться, лучше использовать j.

Мнимая единица равняется √-1. Логично, что нет такого числа при возведении в квадрат, которого может получиться отрицательный результат «-1».

Для переменного тока

В цепи переменного тока закон Ома может иметь некоторые особенности, описанные ниже.

Импеданс, Z

В цепи переменного тока, сопротивление кроме активной (R), может иметь как емкостную (C), так и индуктивную (L) составляющие. В этом случае вводится понятие электрического импеданса, Z (полного или комплексного сопротивления для синусоидального сигнала). Упрощенные схемы комплексного сопротивления приведены на рисунках ниже, слева для последовательного, справа для параллельного соединения индуктивной и емкостной составляющих.

Последовательное включение R, L, C

Параллельное включение R, L, C

Также, полное сопротивление, Z зависит не только от емкостной (C), индуктивной (L) и активной (R) составляющих, но и от частоты переменного тока.

Импеданс, Полное сопротивление, Z
При последовательном включении R, L, C При параллельном включении R, L, C
Z=√(R2+(ωL-1/ωC)2) Z=1/ √(1/R2+(1/ωL-ωC)2)
где,
ω = 2πγ — циклическая, угловая частота; γ — частота переменного тока.

Коэффициент мощности, Cos(φ)

Коэффициент мощности, в самом простом понимании, это отношение активной мощности (P) потребителя электрической энергии к полной (S) потребляемой мощности, т. е.

Cos(φ) = P / S

Он также показывает насколько сдвигается по фазе переменный ток, протекающий через нагрузку, относительно приложенного к ней напряжения.Изменяется от 0 до 1. Если нагрузка не содержит реактивных составляющих (емкостной и индуктивной), то коэффициент мощности равен единице.Чем ближе Cos(φ) к единице, тем меньше потерь энергии в электрической цепи.

Исходя из вышеперечисленных понятий импеданса Z и коэффициента мощности Cos(φ), характерных для переменного тока, выведем формулу закона Ома, коэффициента мощности и их производные для цепей переменного тока:

I = U / Z где I — сила переменного тока, измеряемая в Амперах, (A)   
U — напряжение переменного тока, измеряемое в Вольтах, (V)
Z — полное сопротивление (импеданс), измеряется в Омах, (Ω)

Производные формулы:

Сила тока, I= U/Z P/(U×Cos(φ)) √(P/Z)
Напряжение, U= I×Z P/(I×Cos(φ)) √(P×Z)
Полное сопротивление, импеданс Z= U/I P/I² U²/P
Мощность, P= I²×Z I×U×Cos(φ) U²/Z

Программа «КИП и А» имеет в своем составе блок расчета закона Ома как для постоянного и переменного тока, так и для расчета импеданса и коэффициента мощности Cos(φ). Скриншоты представлены на рисунках внизу:

Закон Ома для постоянного тока

Закон Ома для переменного тока

Расчет полного сопротивления

Расчет коэффициента мощности Cos(φ)

ОСНОВНЫЕ ФОРМУЛЫ ЭЛЕКТРОТЕХНИКИ

Математическая зависимость основных величин для закона Ома приведена в табл.1

Таблица 1. закон Ома для участка цепи

Закон Ома для замкнутой цепи (рис. 1) , где Е – эдс источника тока; — внутреннее сопротивление источника тока; Z – суммарное сопротивление внешней цепи.

Первый закон Кирхгофа: алгебраическая сумма токов в узловой точке электрической цепи рана нулю: (рис. 2,а).

Рис.1 замкнутая цепь(по закону Ома)
Рис.2 схемы к закону Кирхгофа: а — узловая точка (к I закону Кирхгофа), б – замкнутый контур (ко II закону Кирхгофа)

Таблица 2. формулы для определения сопротивлений, индуктивностей и емкостей

Таблица 9. переходные процессы при включении резисторов R и конденсаторов С

Второй закон Кирхгофа: алгебраическая сумма всех эдс в замкнутом контуре равна алгебраической сумме падений напряжений на всех элементах, составляющих цепь: (рис. 2,б)

Закон сложения сопротивлений и проводимостей: при последовательном соединении суммируются сопротивления, при параллельном соединении – проводимости. Расчетные формулы для определения сопротивления R, индуктивностей L и емкостей С приведены в таблице 2.

Переходные процессы возникают в электрической цепи, содержащей индуктивности L и емкости С в период перехода от одного установившегося режима к другому за счет постепенного изменения энергий электрического и магнитного полей.

Первый закон коммутации: в начальный момент после коммута­ции ток в индуктивности остается таким же, каким он был непосред­ственно перед коммутацией, а затем плавно изменяется.

Второй закон коммутации:в начальный момент после коммута­ции напряжение на емкости остается таким же, каким было непо­средственно перед коммутацией, а затем плавно изменяется. Расчет­ные формулы напряжения и тока при замыкании цепи приведены втабл. 3.

ХАРАКТЕРИСТИКИ ЭЛЕКТРИЧЕСКИХ СИГНАЛОВ

Рис. 3. синусоидальное колебание

Мгновенные значения электрических колебаний переменного тока и напряжения математически записываются в виде ; где , где , -амплитуда колебаний; — круговая частота; t – время; — начальная фаза. Графическое колебание показано на рис. 3. Основные зависимости параметров синусоидальных колебаний приведены в табл. 4.

Таблица 4. основные зависимости параметров синусоидальных колебаний

Параметр Зависимость
Круговая частота, рад/с
Частота колебаний, Гц
Период колебаний, с

Действующие значения синусоидальных тока и напряжения определят по формулам или по показаниям прибора

ЭЛЕКТРИЧЕСКАЯ ЦЕПЬ ПОСТОЯННОГО ТОКА

Электрическая цепь состоит из источника электрической энергии, соединительных проводов и приемников электрической энергии.

Электрический ток, протекающий в электрической цепи, представляет собой направленный поток электронов, возникающий под действием электрического поля.

Силу тока измеряют в амперах (а). Один ампер — это сила то­ка, при которой через поперечное сечение проводника каждую секунду проходит один кулон электричества. В одном кулоне содержится 6,3·1018 зарядов электрона.

Электродвижущая сила (э. д. с.) источника электрической энергии включенного в цепь, определяется работой, совершаемой им при перемещении электрических зарядов по всей цепи.

Напряжение— часть электродвижущей силы, определяемая работой источника электрической энергии, которая совершается им при перемещении электрических зарядов на участке цепи. Мощность тока определяется работой, производимой (или потребляемой) в одну секунду, и измеряется в ваттах (вт).

Основные и производные формулы для расчета электрических цепей приведены в табл. 5 и 6.

Таблица 5

Основные формулы



infopedia.su

Формулировка закона

Закон относится к базовому положению в электротехнике.

Формула Ома для участка цепи:

V = IR, где:

  • V — напряжение между 2-мя точками, В;
  • R — сопротивление, свойство материала, используемого для описания противодействия потоку тока, Ом;
  • I — сила тока на участке цепи — поток электронов или электронно-дефицитных атомов, определяемая в А.

Закон Ома

Преобразование пропорциональности в уравнение, приводит к постоянной «R» — сопротивлению.

Зависимость тока и сопротивления

В 1-м случае, закон Ома для участка цепи выражается формулой: I = V/R, понятно, что электроток рассчитывают делением V на R. 2-й вариант утверждает, что V рассчитывают, если известны I и R в цепи. Из уравнения очевидно, что если растут I или R, в то время как другой не изменяется, напряжение также должно возрасти.

Зависимость тока и напряжения

Третий вариант подтверждает, что можно рассчитать R в цепи, перед тем, как найти сопротивление участка цепи по формуле нужно знать два других показателя. Если ток поддерживается постоянным, то рост напряжения приведет к увеличению сопротивления.

Замкнутая сеть

Напряжение в цепях трёхфазного тока

В цепях трёхфазного тока различают фазное и линейное напряжения. Под фазным напряжением понимают среднеквадратичное значение напряжения на каждой из фаз нагрузки относительно нейтрали, а под линейным — напряжение между подводящими фазными проводами. При соединении нагрузки в фазное напряжение равно линейному, а при соединении в (при симметричной нагрузке или при глухозаземлённой нейтрали) линейное напряжение в 3{\displaystyle {\sqrt {3}}} раз больше фазного.

На практике напряжение трёхфазной сети обозначают дробью, в числителе которой стоит фазное при соединении в звезду (или, что то же самое, потенциал каждой из линий относительно земли), а в знаменателе — линейное напряжение. Так, в России наиболее распространены сети с напряжением 220/380 В; также иногда используются сети 127/220 В и 380/660 В.

Преобразованные формулы Закона Ома и Джоуля-Ленца

Встретил в Интернете картинку в виде круглой таблички, в которой удачно размещены формулы Закона Ома и Джоуля-Ленца и варианты математического преобразования формул. Табличка представляет собой не связанные между собой четыре сектора и очень удобна для практического применения

По таблице легко выбрать формулу для расчета требуемого параметра электрической цепи по двум другим известным. Например, нужно определить ток потребления изделием по известной мощности и напряжению питающей сети. По таблице в секторе тока видим, что для расчета подойдет формула I=P/U.

А если понадобится определить напряжение питающей сети U по величине потребляемой мощности P и величине тока I, то можно воспользоваться формулой левого нижнего сектора, подойдет формула U=P/I.

Подставляемые в формулы величины должны быть выражены в амперах, вольтах, ваттах или Омах.

Оцените статью
Рейтинг автора
5
Материал подготовил
Илья Коршунов
Наш эксперт
Написано статей
134
Добавить комментарий