Первый и второй закон кирхгофа

Закон Кирхгофа (страница 3)

Основы > Задачи и ответы > Постоянный электрический ток

Закон Кирхгофа (страница 3)

1. Для цепи схемы рис. 1.26, пользуясь законами Кирхгофа, найти токи и проверить баланс мощностей, если сопротивления элементов в цепи:. Записать уравнения Кирхгофа в матричной форме.Решение:
Всего на схеме цепи пять ветвей , число узлов , источников тока нет , число неизвестных токов равно . Число независимых уравнений, составляемых по второму закону Кирхгофа, согласно (0.1.10) равно трем . Таким образом, общее число независимых уравнений, составляемых по первому и второму законам Кирхгофа, равно числу неизвестных токов в пяти ветвях схемы.Выберем и обозначим стрелками положительные направления токов и направление обхода трех независимых контуров: I, II, III. Составим систему уравнений Кирхгофа:

для узловаb
для контуровIIIIII

Уравнения (1.1) — (1.5) после подстановки в них числовых значений имеют следующий вид:
Решая эту систему уравнений, получим .Отрицательный знак для тока означает, что истинное направление тока в противоположно принятому. Оно обозначено и показано на схеме штриховой стрелкой.При проверке баланса мощностей надо иметь в виду, что в тех ветвях цепи, где направление тока совпадает с направлением ЭДС, соответствующая ЭДС является источником энергии, а в тех участках, где направления ЭДС и тока противоположны, ЭДС — потребитель энергии. Все сопротивления, как внешние, так и источников энергии независимо от направления протекающего через них тока будут потребителями энергии.Баланс мощностей для рассматриваемой схемы
или получено тождество 630 = 630.Матричная форма записи уравнений Кирхгофа (1.1а) — (1.5а) имеет вид:
где — матрица-столбец токов ветвей; — матрица коэффициентов при токах; — матрица-столбец активных элементов,2. Для цепи (рис. 1.34) определить токи. Дано: . Проверить баланс мощностей.

Решение:
Выберем положительные направления токов, как это указано на рис. 1.34, и составим уравнения по законам Кирхгофа. Цепь содержит три ветви , два узла А и В , один источник тока . Число уравнений, составляемых по первому закону Кирхгофа, , а по второму закону Кирхгофа : . Уравнение для узла АНезависимый контур выбираем так, чтобы он не содержал источника тока (на рисунке показан штриховой линией). Для него составляем уравнение второго закона Кирхгофа:

Подставляя в уравнения (1.1) и (1.2) цифровые значения и решив их, получим .Для расчета баланса мощностей необходимо знать напряжение на источнике тока, которое находим по ветвям, внешним по отношению к зажимам источника тока. Напряжение на нем . Составляем баланс мощностей: . Подставляя числовые значения, находим: . Получим тождество: 55 = 55.

Смотри полное содержание по представленным решенным задачам на websor.

Законы Кирхгофа они же Правила Кирхгофа для тока и напряжения. Kirchhoff current (или «first») rule (или «law») & Kirchhohh loop (или «mesh», или «second») rule (или «law»).

  • узлы — точки соединения трёх и более проводников
  • контуры — ЗАМКНУТЫЕ пути из проводников. При этом каждый проводник может входить в несколько контуров.
  • ветви — последовательное соединение элементов между двумя ближайшими узлами
Закон токов Кирхгофа
(Правило токов Кирхгофа, ЗТК, ПТК, Первый закон Кирхгофа, Первое правило Кирхгофа ).
Закон напряжений Кирхгофа
(Правило напряжений Кирхгофа, ЗНК, ПТК, Второй закон Кирхгофа, Второе правило Кирхгофа).
Законы Кирхгофа справедливы для линейных и нелинейных цепей при любом характере временной зависимости токов и напряжений.

Алгебраическая сумма токов в любой точке любой цепи равна нулю (значения вытекающих токов берутся с обратным знаком)

 ΣIi = I1+I2+ …+In = 0  

Иными словами, сколько тока втекает в точку цепи ( на практике используют узел — см. выше), столько из нее и вытекает (из узла и вытекает).

Сколько дает уравнений: Если цепь содержит p узлов, то она описывается p-1 независимыми уравнениями токов относительно узлов.

Удобно считать входящие токи положительными, а выходящие отрицательными.

Алгебраическая сумма падений напряжений по любому ЗАМКНУТОМУ контуру цепи равна алгебраической сумме ЭДС, действующих вдоль этого же контура. Если в контуре нет ЭДС, то суммарное падение напряжений равно нулю. (Если направление тока совпадает с направлением обхода контура, перепад напряжения считается положительным, в противном случае — отрицательным). если в замкнутом контуре k штук ЭДС и n проводников , то:

 E1+E2+ …+Ek = U1+U2+ …+Un = I1R1+I2R2+ …+InRn  

Иными словами, при обходе цепи по контуру, потенциал, изменяясь, возвращается к исходному значению.

Сколько дает уравнений: Если цепь содержит n ветвей, из которых k содержат источники тока (ЭДС) и p узлов , то она описывается n-k-(p-1) независимыми уравнениями напряжений относительно узлов. ( т.е. на практике в расчетах опираются на узлы, а не на что попало)

  • положительные направления токов в ветвях и обозначить их на схеме (как наверху справа — но там неправильно выделены ветви и узлы!!!! — специально такой пример приводим);
  • положительные направления обхода контуров для составления уравнений по второму закону (с целью единообразия рекомендуется для всех контуров положительные направления обхода выбирать одинаковыми, например, по часовой стрелке)
  • Если Вы не угадали с рисунком — получите в ответе отрицательные величнины токов и напряжений и всего-то.

Пример: попробуем записать все возможные уравнения следуя Правилам Кирхгофа для данного рисунка ( он-же — наверху справа, не удивляйтесь) :

Заметим, что он содержит p=3 узла не 6!, k=0 ЭДС, и n=4 ветви (в замкнутых контурах). Ожидаем, потому:

  • p-1 = 2 уравнения тока
  • n-k-(p-1) = 2 уравнения напряжения
  • итого ожидаем 4 независимых уравнения

Вот они:

  1. I1-I2-I6=0
  2. I2-I4-I3=0
  3. U2+U4-U6=0
  4. U2+(U3+U5)-U6=0

Все остальные умные равенства такие как I3=I5, U4=U3+U5 и т.д., которые можно получить из анализа картинки, строго говоря, не опираются на Правила Кирхгофа, а опираются на здравый смысл и законы Ома. Расчеты по правилам Кирхгофа ведут именно по узлам («относительно узлов»), выделив их предварительно на схеме. Конечно:

  • не забываем Основные электротехнические формулы. Мощность. Сопротивление. Ток. Напряжение. Закон Ома.
  • помним, что все соображения Правил Кирхгофа относятся как к действительным, так и комплексным ЭДС и падениям напряжения.

Законы Кирхгофа являются производной от глобальных «законов сохранения»

Поэтому: вот еще одно важное соображение для инженеров:

  • в случаях переноса массы (жидкости, газа) по трубам массовый расход (а для несжимаемых жидкостей в отсутствии химических реакций и объемный расход) является полным аналогом тока и подчиняется Первому Правилу (сколько втекает, столько вытекает).
  • аналогом потенциала в таких системах является давление, аналогом ЭДС в таких системах является пререпд давления создаваемый насосами. Аналогом падения напряжения является падение давления. Эти величины подчиняются Второму правилу Кирхгофа ( при обходе трубы по контуру, давление изменяясь возвращается к исходному значению).
  • Единственным важным отличием от классической электротехники, где сопротивления, в целом, стабильны относительно широких диапазонов тока является тот факт, что гидравлическое сопротивление сильно зависит от характера потока, определяемого такой величиной, как Число Рейнольдса(Re), зависящее от свойств среды и всяких прочих хароактеристик процесса.

История

Пополнил ряды немецких ученых Кирхгоф в девятнадцатом столетии, когда в стране, находившаяся на пороге революции индустриальной, требовались новейших технологии. Ученые занимались поиском решений, которые могли бы ускорить развитие промышленности.

Активно занимались исследованиями в области электричества, поскольку понимали, что в будущем оно будет широко использоваться. Проблема состояла на тот момент не в том, как составлять электрические цепи из возможных элементов, а в проведении математических вычислений. Тут и появились законы, сформулированные физиком. Они очень помогли.

К узлу подходят 2 провода, а отходит один. Значение тока, текущего от узла, такое же, как сумма его, протекающего по двум остальным проводникам, т.е. идущим к нему. Правило Кирхгофа объясняет, что, при ином раскладе, накапливался бы заряд, но такого не бывает. Все знают, что всякую сложную цепь легко разделить на отдельные участки.

Но, при этом непросто определить путь, по которому он проходит. Тем более, что на различных участках сопротивления не одинаковы, поэтому и распределение энергии не будет равномерным.

В соответствие со Вторым правилом Кирхгофа, энергия электронов на каждом из замкнутых участков электрической цепи равняется нулю – нулю равняется всегда в таком контуре суммарное значение напряжений. Если бы нарушилось данное правило, энергия электронов при прохождении определенных участков, уменьшалась бы или увеличивалась. Но, этого не наблюдается.

Законы Кирхгофа. Расчет цепей постоянного тока

В электротехнике существует два основных закона, на основании которых, теоретически можно решить все цепи.

Первый закон Кирхгофа выглядит следующим образом. Сумма токов, входящих в узел, равна сумме токов, отходящих от узла.

Для данного рисунка имеем: I1 + I2 + I4 = I3 + I5.

Второй закон Кирхгофа. Сумма напряжений вдоль замкнутого контура равна сумме ЭДС вдоль этого же контура. Для схемы на рисунке (стрелкой обозначим направление вдоль контура, которое будем считать условно положительным).

Начиная с узла, где сходятся токи I1, I3, I4 запишем все напряжения (по закону Ома): -I1⋅R1 — I1⋅R2 – в первой ветви (знак минус означает, что ток имеет направление противоположное выбранному направлению контура). I3⋅R3 – во второй ветви (знак «плюс», направление совпадает).

Теперь запишем ЭДС: E2 — E3 (знак «минус» у E3, потому что направление ЭДС противоположно направлению контура).

В соответствии с законом Кирхгофа напряжения равны ЭДС: -I1⋅R1 — I1⋅R2 + I3⋅R3 = E2 — E3.

Как видите, все довольно просто.

В большинстве случаев перед студентами стоит задача рассчитать величины токов во всех ветвях, зная величины ЭДС и резисторов. Для расчета сложной, разветвленной цепи постоянного тока, например этой, найденной на просторах интернета, воспользуемся следующими действиями.

Для начала задаемся условно положительными направлениями токов в ветвях (это значит, что ток может течь и в противоположном направлении, тогда он будет иметь отрицательное значение).

Составляем систему уравнений по второму закону Кирхгофа для каждого замкнутого контура так, чтобы охватить каждый неизвестный ток (в данной схеме имеем 3 таких контура). Направления контуров выбираем для удобства по часовой стрелке (хоть это и необязательно):

По первому закону Кирхгофа составляем столько уравнений, чтоб охватить все неизвестные токи (в данной схеме для любых трех узлов):

Итого, имеем систему из 6 уравнений. Чтобы решить такую систему можно воспользоваться программой MathCad. Решается она следующим образом:

Это скриншот программы. Знак «равно» в уравнения должен быть жирным (вкладка «булевы», CTRL + “=/+”). MathCad может решать системы любого порядка (например, схема имеет 10 независимых контуров). Но, во-первых, функция “Given” не работает с комплексными числами (об этом позже), во-вторых, не всегда есть под рукой компьютер или условие задачи поставлено так, что требуется решить схему другим методом.

Данный метод решения задач называется методом непосредственного применения законов Кирхгофа. Большинство студентов старших курсов (уже прослушавших курс ТОЭ), инженеров-электриков, даже преподавателей и докторов наук могут решать схемы только этим методом, т.к. другие методы применяются крайне редко.

Закон Кирхгофа (страница 1)

Основы > Задачи и ответы > Постоянный электрический ток

Закон Кирхгофа (страница 1)
Применение закона Кирхгофа к расчету линейных электрических цепей постоянного тока

1. В цепи (рисунок 10) известны значения токов ; величины сопротивлений . Определить напряжение U на входных зажимах цепи, сопротивление и величину Е источника ЭДС.Решение:
По закону Ома определим напряжение между узлами 3-2:
Из уравнения, составленного по первому закону Кирхгофа для узла 3:
определим ток
Тогда, по закону Ома для ветви с сопротивлением
откуда выражаем величину Е источника ЭДС:
Напряжение можно выразить из уравнения, записанного по II закону Кирхгофа для контура 1-3-2-1:
Зная величины напряжения и тока , определим величину сопротивления
Напряжение на входных зажимах цепи определится:
Ток определим из уравнения, записанного по первому закону Кирхгофа для 1 узла:
тогда2. В цепи (рисунок 11) известны величины сопротивлений резистивных элементов ; мощность, изменяемая ваттметром Р=320 Вт. Определить токи ветвей, напряжение на зажимах цепи.Решение:
Из формулы для расчета мощности выражаем ток
Затем определяем напряжение на зажимах параллельных ветвей:
По закону Ома определяем ток в ветви с сопротивлением
Значение тока в неразветвленной части цепи определим из уравнения, записанного по первому закону Кирхгофа для узла 1:
Напряжение на входных зажимах цепи можно представить как сумму падений напряжений на сопротивлениях
где
тогда

3. На рисунке 12 показана часть сложной цепи. Задано: . Найти напряжение .Решение:
Уравнение по второму закону Кирхгофа для данного контура, при выбранном направлении обхода контура, запишется следующим образом:
откуда выражаем напряжение 4. В схеме (рисунок 13) известны: . Определить напряжения .Решение:
Считаем направления обходов контуров совпадающими с направлениям искомых напряжений. Запишем уравнения по второму закону Кирхгофа для каждого контура и выразим напряжения:контур 1-2-6-5-1
контур 3-4-6-5-3
контур 1-3-5-1
контур 2-4-6-2
контур 1-4-6-5-1
контур 2-3-5-6-25. Определить показание амперметра (рисунок 14), если .Решение:
По закону Ома определим значения токов в ветвях:
Запишем уравнение по первому закону Кирхгофа для узла b:
откуда6. На рисунке 15 показана часть сложной цепи. Найти напряжения , если .Решение:
По закону Ома определим ток на участке с-d:
Запишем уравнение по второму закону Кирхгофа для контура a-b-c-d:
откуда выразим напряжение

7. В схеме электрической цепи, приведенной на рисунке 16, определить токи в ветвях пользуясь законами Кирхгофа. Параметры элементов цени: .Решение:
Выбираем произвольно положительные направления искомых токов ветвей и обозначаем их на схеме. Составляем уравнение по первому закону Кирхгофа для узла 1. Выбрав направления обходов контуров, составляем уравнения по второму закону Кирхгофа. Получаем систему из трех уравнений:
Решаем полученную систему уравнений с помощью определителей:
Находим значения токов:
Для проверки правильности расчета составим уравнение баланса мощностей:
Мощность источников:
Мощность потребителей:8. Определить токи ветвей цепи (рисунок 17), если: .Решение:
Произвольно задаемся положительными направлениями токов в ветвях с сопротивлениями . В ветви с источником тока направление тока уже определено полярностью источника. Составляем уравнение по первому закону Кирхгофа для узла 1. Количество контурных уравнений зависит от количества ветвей с неизвестными токами, т.е. ветвей, не содержащих источники тока. Для данной цепи количество контурных уравнений равно 1. Составим систему уравнений:
Решаем систему уравнений с помощью определителей:
Определяем значения токов:

Смотри полное содержание по представленным решенным задачам на websor.

1.10. Правила Кирхгофа для разветвленных цепей window.top.document.title = «1.10. Правила Кирхгофа для разветвленных цепей»;

Для упрощения расчетов сложных электрических цепей, содержащих неоднородные участки, используются правила Кирхгофа, которые являются обобщением закона Ома на случай разветвленных цепей.

В разветвленных цепях можно выделить узловые точки (узлы), в которых сходятся не менее трех проводников (рис. 1.10.1). Токи, втекающие в узел, принято считать положительными; вытекающие из узла – отрицательными.

Рисунок 1.10.1.Узел электрической цепи. I1, I2 > 0; I3, I4 < 0

В узлах цепи постоянного тока не может происходить накопление зарядов. Отсюда следует первое правило Кирхгофа:

Алгебраическая сумма сил токов для каждого узла в разветвленной цепи равна нулю:

Первое правило Кирхгофа является следствием .

В разветвленной цепи всегда можно выделить некоторое количество замкнутых путей, состоящих из однородных и неоднородных участков. Такие замкнутые пути называются контурами. На разных участках выделенного контура могут протекать различные токи. На рис. 1.10.2 представлен простой пример разветвленной цепи. Цепь содержит два узла a и d, в которых сходятся одинаковые токи; поэтому только один из узлов является независимым (a или d).

Рисунок 1.10.2.Пример разветвленной электрической цепи. Цепь содержит один независимый узел (a или d) и два независимых контура (например, abcd и adef)

В цепи можно выделить три контура abcd, adef и abcdef. Из них только два являются независимыми (например, abcd и adef), так как третий не содержит никаких новых участков.

Второе правило Кирхгофа является следствием обобщенного .

Запишем обобщенный закон Ома для участков, составляющих один из контуров цепи, изображенной на рис. 1.10.2, например, abcd. Для этого на каждом участке нужно задать положительное направление тока и положительное направление обхода контура. При записи обобщенного закона Ома для каждого из участков необходимо соблюдать определенные «правила знаков», которые поясняются на рис. 1.10.3.

Рисунок 1.10.3.«Правила знаков»

Для участков контура abcd обобщенный закон Ома записывается в виде:

Для участка bc: I1R1 = Δφbc – 1.

Для участка da: I2R2 = Δφda – 2.

Складывая левые и правые части этих равенств и принимая во внимание, что Δφbc = – Δφda , получим:

Аналогично, для контура adef можно записать:

Второе правило Кирхгофа можно сформулировать так: алгебраическая сумма произведений сопротивления каждого из участков любого замкнутого контура разветвленной цепи постоянного тока на силу тока на этом участке равна алгебраической сумме ЭДС вдоль этого контура.

Первое и второе правила Кирхгофа, записанные для всех независимых узлов и контуров разветвленной цепи, дают в совокупности необходимое и достаточное число алгебраических уравнений для расчета значений напряжений и сил токов в электрической цепи. Для цепи, изображенной на рис. 1.10.2, система уравнений для определения трех неизвестных токов I1, I2 и I3 имеет вид:

Таким образом, правила Кирхгофа сводят расчет разветвленной электрической цепи к решению системы линейных алгебраических уравнений. Это решение не вызывает принципиальных затруднений, однако, бывает весьма громоздким даже в случае достаточно простых цепей. Если в результате решения сила тока на каком-то участке оказывается отрицательной, то это означает, что ток на этом участке идет в направлении, противоположном выбранному положительному направлению.

Модель.
Цепи постоянного тока

Модель.
Конденсаторы в цепях постоянного тока

Использование закона Кирхгофа о напряжениях в сложной цепи

Закон Кирхгофа о напряжениях можно использовать для определения неизвестного напряжения в сложной цепи, где известны все другие напряжения вдоль определенного «контура». В качестве примера возьмем следующую сложную схему (на самом деле две последовательные цепи, соединенные одним проводом внизу):

Рисунок 10 – Правило напряжений Кирхгофа в сложной цепи

Чтобы упростить задачу, я опустил значения сопротивлений и просто указал падение напряжения на каждом резисторе. Две последовательные цепи имеют между собой общий провод (провод 7-8-9-10), что делает возможными измерения напряжения между этими двумя цепями. Если бы мы хотели определить напряжение между точками 4 и 3, мы могли бы составить уравнение правила напряжений Кирхгофа с напряжением между этими точками как неизвестным:

E4-3 + E9-4 + E8-9 + E3-8 = 0

E4-3 + 12 + 0 + 20 = 0

E4-3 + 32 = 0

E4-3 = -32 В

Рисунок 11 – Правило напряжений Кирхгофа в сложной цепи. Напряжение между точками 4 и 3Рисунок 12 – Правило напряжений Кирхгофа в сложной цепи. Напряжение между точками 9 и 4Рисунок 13 – Правило напряжений Кирхгофа в сложной цепи. Напряжение между точками 8 и 9Рисунок 14 – Правило напряжений Кирхгофа в сложной цепи. Напряжение между точками 3 и 8

Обойдя контур 3-4-9-8-3, мы записываем значения падений напряжения так, как их регистрировал бы цифровой вольтметр, измеряя с красным измерительным проводом в точке впереди и черным измерительным проводом на точке позади, когда мы продвигаемся вперед по контуру. Следовательно, напряжение в точке 9 относительно точки 4 является положительным (+) 12 вольт, потому что «красный провод» находится в точке 9, а «черный провод» – в точке 4.

Напряжение в точке 3 относительно точки 8 составляет положительные (+) 20 вольт, потому что «красный провод» находится в точке 3, а «черный провод» – в точке 8. Напряжение в точке 8 относительно точки 9, конечно, равно нулю, потому что эти две точки электрически общие.

Наш окончательный ответ для напряжения в точке 4 относительно точки 3 – это отрицательные (-) 32 вольта, говорящие нам, что точка 3 на самом деле положительна относительно точки 4, именно это цифровой вольтметр показал бы при красном проводе в точке 4 и черном проводе в точке 3:

Рисунок 15 – Правило напряжений Кирхгофа в сложной цепи. Напряжение между точками 4 и 3

Другими словами, первоначальное размещение наших «измерительных щупов» в этой задаче правила напряжений Кирхгофа было «обратным». Если бы мы сформировали наше уравнение второго закона Кирхгофа, начиная с E3-4, вместо E4-3, обходя тот же контур с противоположной ориентацией измерительных проводов, окончательный ответ был бы E3-4 = +32 вольта:

Рисунок 16 – Правило напряжений Кирхгофа в сложной цепи. Напряжение между точками 3 и 4

Важно понимать, что ни один из подходов не является «неправильным». В обоих случаях мы приходим к правильной оценке напряжения между двумя точками 3 и 4: точка 3 положительна по отношению к точке 4, а напряжение между ними составляет 32 вольта

Задача 1

Дана схема, и известны сопротивления резисторов и ЭДС источников. Требуется найти токи в ветвях, используя законы Кирхгофа.

Используя первый закон Кирхгофа, можно записать n-1 уравнений для цепи. В нашем случае количество узлов n=2, а значит нужно составить только одно уравнение.

Напомним, что по первому закону, сумма токов сходящихся в узле равна нулю. При этом, условно принято считать входящие токи в узел положительными, а выходящими отрицательными. Значит для нашей задачи

Затем используя второй закон (сумма падений напряжения в независимом контуре равна сумме ЭДС в нем) составим уравнения для первого и второго контуров цепи. Направления обхода выбраны произвольными, при этом если направление тока через резистор совпадает с направлением обхода, берем со знаком плюс, и наоборот если не совпадает, то со знаком минус. Аналогично с источниками ЭДС.

На примере первого контура – ток I1 и I3 совпадают с направлением обхода контура (против часовой стрелки), ЭДС E1 также совпадает, поэтому берем их со знаком плюс.

Уравнения для первого и второго контуров по второму закону будут:

Все эти три уравнения образуют систему

Подставив известные значения и решив данную линейную систему уравнений, найдем токи в ветвях (способ решения может быть любым).

Проверку правильности решения можно осуществить разными способами, но самым надежным является проверка балансом мощностей.

Первое правило Кирхгофа

Первое правило Густава Кирхгофа сформулировано исходя из закона сохранения заряда. Физик понимал, что заряд не может задерживаться в узле, а распределяется по ветвям контура, образующим это соединение.

На рисунке 1 изображена простая схема, состоящая из контуров. Точками A, B, C, D обозначены узлы контура в центре схемы.


Рис. 1. Схема контура

Ток I1 входит в узел A, образованный ветвями контура. На схеме электрический заряд распределяется в двух направлениях – по ветвям AB и AD. Согласно правилу Кирхгофа, входящий ток равен сумме выходящих: I1 = I2 + I3.

На рисунке 2 представлен абстрактный узел, по ветвям которого течёт ток в разных направлениях. Если сложить векторы i1, i2, i3, i4 то, согласно первому правилу Кирхгофа, векторная сумма будет равняться 0: i1 + i2 + i3 + i4 = 0. Ветвей может быть сколько угодно много, но равенство всегда будет справедливым, с учётом направления векторов.


Рис. 2. Абстрактный узел

Запишем наши выводы в алгебраической форме, для общего случая:

Для использования этой формулы, требуется учитывать знаки

Для этого необходимо выбрать направление одного из векторов тока (не важно, какого) и обозначить его знаком «плюс». При этом знаки всех других величин определить, исходя от их направления, по отношению к выбранному вектору

Чтобы избежать путаницы, ток, направленный в точку узла, принято считать положительным, а векторы, направленные от узла – отрицательными.

Изложим первое правило Кирхгофа, выраженное приведённой выше формулой: «Алгебраическая сумма сходящихся в определённом узле токов, равна нулю, если считать входящие токи положительными, а отходящими – отрицательными».

Первое правило дополняет второе правило, сформулированное Кирхгофом. Перейдём к его рассмотрению.

Второй закон Кирхгофа

Второй закон Кирхгофа воспринимается начинающими радиолюбителями гораздо сложнее, нежели первый. Однако сейчас вы убедитесь, что он достаточно прост и понятен, если объяснять его нормальными словами, а не заумными терминами.

Упрощенно 2 закон Кирхгофа говорит: сумма ЭДС в замкнутом контуре равна сумме падений напряжений

ΣE = ΣIR

Самый простой случай данного закона разберем на примере батарейки 1,5 В и одного резистора.

Поскольку резистор всего один и одна батарейка, то ЭДС батарейки 1,5 В будет равна падению напряжения на резисторе.

Если мы возьмем два резистора одинакового номинала и подключим к батарейке, то 1,5 В распределятся поровну на резисторах, то есть по 0,75 В.

Если возьмем три резистора снова одинакового номинала, например по 1 кОм, то падение напряжения на них будет по 0,5 В.

Формулой это будет записано следующим образом:

Рассмотрим условно более сложный пример. Добавим в последнюю схему еще один источник питания E2, напряжением 4,5 В.

Обратите внимание, что оба источника соединены последовательно и согласно, то есть плюс одной батарейки соединяется с минусом другой батарейки или наоборот. При таком способе соединения гальванических элементов их электродвижущие силы складываются: E1 + E2 = 1,5 + 4,5 = 6 В, а падение напряжения на каждом сопротивлении составляет по 2 В

Формулой это описывается так:

И последний отличительный вариант, который мы рассмотрим в данной статье, предполагает последовательное встречное соединение гальванических элементов. При таком соединении источников питания из большей ЭДС отнимается значение меньшей ЭДС. Следовательно к резисторам R1…R3 будет приложена разница E1 – E2, то есть 4,5 – 1,5 = 3 В, — по одному вольту на каждый резистор.

Урок 14. Законы Кирхгофа простыми словами с примерамиУрок 14. Законы Кирхгофа простыми словами с примерами

Второй закон Кирхгофа работает не зависимо от количества источников питания и нагрузок, а также независимо от места их расположения в контуре схемы. Полезно будет собрать рассмотренные схемы и выполнить соответствующие измерения с помощью мультиметра.

Законы Кирхгофа действуют как для постоянного, так и для переменного тока.

Оцените статью
Рейтинг автора
5
Материал подготовил
Илья Коршунов
Наш эксперт
Написано статей
134
Добавить комментарий