Тепловая защита трансформатора

Классификация

МТЗ трансформатора в зависимости от характера связи времени выдержки с величиной тока КЗ делят на 3 основные группы:

Независимые. Этот вид состоит из МТЗ с неизменной на всем рабочем интервале значений аргумента выдержкой времени (tвыд.). Которая в интервале значений тока от 0 до Iсраб. включительно уменьшается до 0. Графически корреляцию данных параметров можно представить в виде двух отрезков параллельных оси X. Один из них находящийся на расстоянии tвыд от нее, другой, лежащий ней. Если ось X графика принять за ток, а Y – за время выдержки. Устройства, входящие в эту категорию являются основным видом электрозащиты воздушных ЛЭП, запитанных с одной стороны. Они применяются также и для силовых трансформаторов, кабельных линий, и электродвигателей рабочим напряжением от 6 до 10 тыс. В.

  • Зависимые. Эту группу составляют МТЗ с обратной нелинейной зависимостью выдержки времени от тока. График, отражающий связь этих параметров, является кривой формой напоминающую гиперболу. МТЗ защита трансформатора такого типа дает возможность считаться с перегрузочной способностью электрооборудования, и выполнять защиту от токовых перегрузок.
  • Ограниченно зависимые. Максимальная токовая МТЗ защита трансформатора, относящаяся к этой группе, объединяет в себе характеристики 2 предыдущих. А именно: рост тока до определенного значения пропорционально сокращает время срабатывания. Дальнейшее же увеличение первого не приводит к снижению выдержки времени. Поэтому изображение зависимости этих параметров является гиперболой, переходящей в прямую линию.

Встречается также комбинированный вид защиты МТЗ. Он отличается большей помехозащищенностью и меньшим числом ложных срабатываний. Принцип действия этой мтз трансформатора состоит в том, что необходимость отключения питания определяется не только по росту потребляемого тока, но и по снижению питающего напряжения. Что достигается сочетанием токовой защиты с реле минимального напряжения. Такая конфигурация не допускает отключения питания в момент запуска мощного электродвигателя, когда возникает значительный быстрый рост потребляемой мощности на участке сети. Так как сработка токовой защиты блокируется из-за отсутствия падения напряжения.

Газовое реле принцип действия

Газовая защита  (ГЗ) осуществляется с помощью специальных газовых реле. Газовое реле представляет собой металлический кожух, врезанный в маслопровод между баком трансформатора и расширителем. Реле заполнено маслом.

газовое реле трансформатор

Кожух имеет смотровое стекло со шкалой, с помощью которой определяется объем скопившегося в реле газа. На крышке газового реле имеется краник для выпуска воздуха и взятия пробы газа для его анализа, а также расположены контакты для подключения кабеля.

Конструкции газовых реле различаются принципом исполнения реагирующих элементов в виде:

  1. поплавка;
  2. лопасти;
  3. чашки.

Поплавковые реле газовое реле

У поплавковых реле внутри кожуха укреплены на шарнирах два поплавка, представляющие собой полые металлические цилиндры. На поплавках укреплены ртутные контакты, соединенные гибкими проводами с выводными зажимами на крышке реле. Ртутный контакт представляет собой стеклянную колбочку с впаянными в ее вертикальную часть двумя контактами. Колбочки содержат небольшое количество ртути, которая в определенном положении колбочки замыкает между собой контакты, чем создается цепь через реле. При скорости движении потоков газа и масла порядка 0,5 м/с нижний поплавок, находящийся на пути потока опрокидывается и происходит замыкание его ртутных контактов в цепи отключения. Благодаря тому, что при КЗ (коротком замыкании) в трансформаторе сразу возникает бурное газообразование, ГЗ производит отключение с небольшим временем 0,1-0,3 сек. Отключающий элемент работает также при большом понижении уровня масла в корпусе реле.

Рис. 9.4 Поплавковое газовое реле, принцип действия

Лопастное реле газовое реле

Принцип действия газовой защиты, реле лопастного типа похож работу реле поплавкового типа, различается  в том, что его главный элемент состоит из поплавка и лопасти, они соединены с ртутным контактом, дающим команду на отключение.

Рис. 9.5 Лопастное газовое реле принцип работы

Чашечные реле

У чашечных реле вместо поплавков используется открытые металлические чашки и вместо ртутных контактов обычно открытые контакты, работающие непосредственно в масле. Нормально, когда корпус реле полностью заполнен маслом, при этом верхняя и нижняя чашки тоже заполнены маслом и удерживаются в исходном состоянии пружинами.

Чашечное газовое реле

Наиболее известно и широко распространено газового реле типа РГЧЗ-66, выпускавшегося Запорожским трансформаторным заводом.

В настоящее время выпускаются газовые и струйные реле защиты трансформаторов типа РГТ50, РГТ80, РСТ25, разработанные ОРГРЭС и ВНИИР. Данные реле имеют преимущества перед старыми конструкциями.

Преимущества защиты

Среди основных преимуществ газовой защиты трансформатора можно выделить следующие пункты:

  1. Простота устройства данной защиты, а также высокая чувствительность реле.
  2. Количество времени, которое необходимо защите для принятия решения, очень мало. Присутствует возможность выбора между сигналом и отключением, в зависимости от информации о повреждении внутри объекта.
  3. Именно газовая защита считается наиболее чувствительной при защите обмоток трансформатора, а также при замыкании его витков.

Кроме сказанного, можно добавить, что все трансформаторы, мощность которых 1 000 кВт и более, поставляются уже с наличием данного типа защиты. Однако есть небольшой минус, который заключается в том, что газовая защита никак не реагирует на повреждения выводов агрегата, а потому должна комплектоваться второй защитой от внутренних неполадок. К примеру, в трансформаторах малой мощности, такой системой защиты стали МТЗ и токовые отсечки.

Общие принципы выбора уставок ДЗТ

Когда требуется уменьшить составляющую небаланса используют блоки БМРЗ с отдельными характеристиками. К числу таких относят учет положения прибора. Выделяют типы:

  • грубые;
  • чувствительные.

К первому типу установки относят все усредненные регулятивные положения (до половины отклонения). При чувствительных выбирают вариации с отклонениями не более 5 процентов от изначального показателя. Чувствительность увеличивается, если снижать ток при расчете положения трансформатора.

Принцип выбора состоит в поиске верной группы переключения. Условия пользования блоками приведены в инструкциях к устройствам. Современные варианты переключаются автоматически, при этом блок сам ответственен на подачу сигнала

Важно провести такие действия как установку первичного тока, установку сигнала небаланса

Выбор уставки начального тока срабатывания ДЗТ

На этот этапе важной характеристикой становятся условия отстройки. Они вычисляются от максимального показателя тока небаланса при включенной нагрузке

Учет происходит в режимах двух переключателей. Один раз проверяются данные по грубому, а второй по чувствительному типу. После проводится суммирование показателей и вычисляется среднестатистическое.

Показатели тока меняются в зависимости от количества слоев обмотки. Для двухобмоточных или трехобмоточных вариантов будут разными показатели тока.

Выбор уставки коэффициента торможения второго участка, характеристики

Этот коэффициент вычисляется по формулам условий отстройки в зависимости от тока небаланса номинального, который появляется при токе торможения в окончании последнего участка.

Учитывается тип чувствительности установки — расчеты проводятся дважды. Грубыми принимают в том случае, если регуляции напряжения в источники не происходит и не имеет никакого влияния. Обычно для расчетов принимается значение равное минимальному для ввода.

Выбор уставки коэффициента торможением третьего участка, характеристики

Здесь учитываются условия отстройки срабатывания от тока небаланса при условиях максимальных показателей кз. Для вычисления необходимы данные о коэффициенте увеличения погрешности (он принимается стандартно равным 2,5), фазном токе, максимальной погрешности, номинальном вторичном токовом импульсе.

Проверка чувствительности ДЗТ

Чувствительность вычисляется на выводах, когда функционирование ведется в привычном режиме на ответвлении. По стандартам коэффициент не должен превышать двух. Но в ряде случаев снижение невозможно по техническим причинам. Значение принимается равным 1,5 или около того, если:

  • мощностные характеристики на выводах низшего тс меньше 800 мва;
  • если не происходит питание одной из сторон;
  • при включении под напряжение с одной стороны;
  • в режиме короткого замыкания за реактором.

Если присутствуют другие защитные механизмы, то ее допустимо не использовать

Все внимание уделяется коэффициенту чувствительности и по его особенностям судят о возможности исключения прибора. Расчет коэффициента проводится в случае, если минеральное значение небаланса более десятой доли единицы

Выбор уставки сигнализации небаланса

Критерии выбираются таким образом, чтоб коэффициент находится в разумных границах. Учитываются показатели коэффициента отстройки (вкладываются дополнительные 10-20 процентов), а также максимум по временным показателям резервов.

Выбор уставок ДЗТ при наличии ТСН в зоне защиты

Коэффициент в таком случае будет равен 1,5. Учитывают периодичность протекания тока по фазам и показатели нормального тока, который подается на первичную обмотку трансформатора. Дополнительно рассматривают данные о рабочем токе, который возникает в режиме нагрузки.

Выбор уставок блокирования ДЗТ при возникновении БТН

Необходимо учитывать все вышеизложенные инструкции, но, кроме этого, инструкции дополнены другими пунктами. Среди них:

  • перекрестную блокировку применять только в случаях, если того требуют особенности группы соединения обмоток;
  • если возможно проследить причины отключения тс и устранить их, то блокирование крест-накрест не используется;
  • если выявленная причина — недопустимое значение ИПБ для проведения блока, то повторно включают оборудование.

Защита трансформатора от перегрузки: основные виды

Все оборудование, которое используется в силовых установках должно быть надежно защищено от образования кратковременных перегрузок. Защита трансформатора от перенапряжений может потребоваться, чтобы проверить, какие нагрузки сможет выдержать устройство. Для защиты обычно специалисты используют предохранители. Если один трансформатор выполнит аварийное завершение работы, тогда другие устройства смогут полностью компенсировать номинальное напряжение. Именно этот процесс позволит обеспечить надежную работу устройства.

Теперь мы решили предоставить вашему вниманию основные виды защиты силовых трансформаторов:

  1. Предохранители и специальные трехфазные выключатели.
  2. Использование дифференциальной защиты устройства.
  3. Газовая защита трансформатора.
  4. Пожарная защита.
  5. Сигнальная страховка с помощью компьютерных программ.

Это основные виды защиты, которые могут использоваться на сегодняшний день.

https://youtube.com/watch?v=rOiSPhCvJPQ

Почему у томатов закручивается верхушка

12.1 Дифференциальная защита трансформатора

ТДН — 16000/110/10

Максимальный ток
трехфазного короткого замыкания,
приведенный к стороне высшего напряжения
силового трансформатора:

,
(153)

где
— ток короткого замыкания в точке К-3 на
шинах 10 кВ ГПП;

— среднее напряжение высокой и низкой
сторон силового трансформатора.

(А).

Минимальный ток
двухфазного короткого замыкания на
шинах 10 кВ ГПП, приведенный к стороне
высшего напряжения силового трансформатора:

;
(154)

(А).

Первичный и вторичный
номинальные токи силового трансформатора:

;
(155)

;
(156)

(А).

(А).

Для выбора трансформаторов
тока найдем максимальные рабочие токи:

на стороне высшего
напряжения:

;
(157)

(А).

на стороне низкого
напряжения:

;
(158)

(А).

На стороне ВН принимаем
к установке трансформатор тока типа
ТФЗМ110-У1-200-0,5/10р/10р:
,.

Коэффициент трансформации
трансформатора тока

(159)

На стороне НН принимаем
к установке трансформатор тока типа
ТОЛ-10-1500-0,5/10Р:
,.

Коэффициент трансформации
трансформатора тока

;
(160)

.

Силовой трансформатор
имеет схему соединения обмоток У/Д,
следовательно, для компенсации сдвига
фаз трансформаторы тока на высокой
стороне включаются по схеме полного
треугольника (),
а трансформаторы тока на низкой стороне
— по схеме звезды ().

Защита выполняется с
помощью дифференциального реле РСТ-15.

Вторичные токи
трансформаторов тока в номинальном
режиме работы:

;
(161)

(А).

(А).

За основную сторону
принимаем сторону высшего напряжения,
так как
.

Определяем токи небаланса,
вызванные погрешностями трансформаторов
тока
и регулированием напряжения под нагрузкой
(РПН).
При этом все токи приводим к ступени
напряжения основной стороны.

Определим ток небаланса
:

,
(162)

где
— коэффициент однотипности трансформаторов
тока;

— коэффициент апериодической составляющей
для дифференциального реле;

— допустимая погрешность трансформаторов
тока;

А.

Определим ток небаланса
:

,
(163)

где
— пределы регулирования напряжения на
стороне ВН;

— пределы регулирования напряжения на
стороне СН.

А.

Предварительное значение
тока срабатывания защиты по условию
отстройки от токов небаланса

,
(163)

где
— коэффициент отстройки от токов
небаланса;

(А).

Ток срабатывания защиты
по условию отстройки от броска тока
намагничивания

,
(164)

где
— коэффициент отстройки от броска тока
намагничивания;

(А).

Из двух токов срабатывания
выбираем наибольший, то есть
А.

Найдем предварительное
значение коэффициента чувствительности:

;
(165)

.

Коэффициент чувствительности
удовлетворяет требуемым условиям,
продолжаем расчет для реле РСТ-15.

Ток срабатывания реле
на основной стороне:

;
(166)

(А).

Ток срабатывания реле
на неосновной стороне

(167)

где
— коэффициент трансформации силового
трансформатора.

,(А).

Примем число витков
основной обмотки
.

Расчетная МДС основной
обмотки

;
(168)

(А·витков).

Принимаем ближайшее
стандартное значение МДС
.

Расчетное число витков
неосновной обмотки находится из условия

;
(169),.

Принимаем
.

Составляющая тока
небаланса
из-за неравенства расчетного и
действительного числа витков

;
(170)

(А).

Ток срабатывания защиты
с учетом всех составляющих тока небаланса

,
(171)

где
— коэффициент отстройки.

(А).

Коэффициент чувствительности
определяем по формуле (165):

.

Так как коэффициент
чувствительности превышает требуемое
нормированное значение, то защита
удовлетворяет требованиям чувствительности.

Ток срабатывания реле
на основной стороне

(А).

Ток срабатывания реле
на неосновной стороне

(А).

9-6. Защита от перегрузки

Перегрузка трансформаторов (автотрансформаторов) обычно бывает симметричной. Поэтому защита от перегрузки выполняется с помощью максимальной токовой защиты, включенной на ток одной фазы. Защита действует с выдержкой времени на сигнал, а на необслуживаемых подстанциях — на разгрузку или отключение трансформаторов (автотрансформаторов).
На двухобмоточных трансформаторах защита от перегрузки устанавливается со стороны основного питания. На трехобмоточных трансформаторах при двустороннем питании — со стороны основного питания и со стороны обмотки, где питание отсутствует, а при трехстороннем питании — со всех трех сторон.

Газовое реле

Названный вид защиты в трансформаторе представлен механическим реле, которое дополняется двумя парами контактов. Стоит отметить, что интенсивность образования газов внутри трансформатора будет напрямую зависеть от степени, а также характера тех повреждений, которые вызвали это самое образование газов.

Именно благодаря этому есть возможность создать такую газовую защиту трансформатора, которая будет способна определять степень и характер повреждения и, в зависимости от полученных данных, посылать сигнал либо же сразу отключать агрегат. Основным элементом защиты в таких устройствах является газовое реле класса KSG. Его установка осуществляется в маслопроводе, который располагается между баком и расширителем.

7.  Дифференциальные защиты ЛЭП (1 семестр)7. Дифференциальные защиты ЛЭП (1 семестр)7.  Дифференциальные защиты ЛЭП (1 семестр)7. Дифференциальные защиты ЛЭП (1 семестр)

Контроль изоляции  цепей газовой защитыКонтроль изоляции цепей газовой защиты

Дифференциальная защитаДифференциальная защита

Защита трансформатора

Прямое предназначение защитного устройства для трансформатора высокой мощности — это сохранение его от внутренних повреждений. К таким внутренним угрозам относят следующие:

  1. Витковые замыкания в таких обмотках как ВН и НН.
  2. Пожар стали трансформатора.
  3. Утечка масла из бака трансформатора.

Принцип действия газовой защиты трансформатора основывается на том, что система контролирует разложение трансформаторного масла, которое происходит из-за воздействия очень высоких температур на газы. Повышение температуры — это локальная проблема, которая возникает из-за короткого замыкания обмотки описываемого устройства или же при возникновении пожара стали. При появлении данной проблемы, место, где произошел сбой, будет сильно нагреваться, из-за чего температура газов также будет расти.

Релейная защита трансформатора – это система, состоящая из измерительных и коммутационных устройств, отключающая трансформатор при ненормальных режимах работы и в случае ситуаций приводящих к повреждению

К ненормальным и опасным режимам работы силового трансформатора относятся:

  • — перегрузка по одной или трем фазам, приводящим к повышению тока, проходящего через обмотки,
  • — замыкание на землю или на нейтраль одного или всех выводов трансформатора с высокой или низкой стороны,
  • — межфазные замыкания внутри обмоток и со стороны выводящих шин,
  • — замыкания внутри обмоток трансформатора.

Во всех этих случаях сигналом возникновения опасной ситуации служат повышение проходящего через короткозамкнутый участок тока и понижение напряжения.

Релейная защита должна надежно зафиксировать отклонение тока или напряжения и отключить трансформатор или поврежденный участок.

Защита по максимальному току (МТЗ)

– срабатывает при превышении тока, проходящего через трансформатор (Рис. 1). Реле автоматики А0 и А1 срабатывают при токе, превышающем ток короткого замыкания для данной обмотки. Измерение тока осуществляется через трансформатор тока, включенного на две шины А и С.

При наличии межфазного замыкания на шине В через другие шины все равно протекает большой ток. Одно или два реле автоматики запускают цепь запуска реле времени Т.

Задержка реле времени требуется для лучшей селективности защиты – чем ближе трансформатор по линии к источнику энергии, тем меньшее должно быть время срабатывания. Реле времени через определенный промежуток времени запускает промежуточное реле

Рис.1

L, управляющей цепью реле отключения YAT. Реле отключения после срабатывания отключает входы и выходы трансформатора от источника и потребителя энергии и блокируется по цепям либо реле времени, либо промежуточного реле.

Разновидностью МТЗ является защита по току отсечки

При удалении трансформатора по линии от источника энергии ток короткого замыкания становится меньшим из-за потерь на сопротивление.

Вместе с тем задержка по времени для МТЗ не позволяет быстро отключить трансформатор при внутренних межфазных замыканиях, приводящих к выходу трансформатора из строя. Конструктивно защита по токовой отсечке (Рис. 2) отличается от МТЗ отсутствием реле времени. Селективность реле достигается подбором тока срабатывания реле автоматики. Данный ток должен быть равным току КЗ на защищаемом участке. Релейная защита силовых трансформаторов

Рис. 2

Рис.3

Срабатывание МТЗ по току обладает недостаточной чувствительностью в некоторых случаях, например при защите повышающего трансформатора. В данном случае защита запускается по напряжению (Рис. 3). Трансформаторы напряжения включенные между фазовых шин управляют работой реле автоматики А0 и А1. Срабатывание этих реле происходит при понижении порога напряжения короткого замыкания. Алгоритм работы аналогичен МТЗ, но сторона подключения – всегда источник энергии.

Автоматическая релейная защита

Реле защиты в трансформаторе представляет собой небольшую емкость с маслом, совмещенную с соединительной трубкой, выходящей из главного резервуара устройства. Используется в установках, таких как трансформаторы дуговой плавки, морская техника, ГПП и т.д. Служит для защиты от коротких замыканий. Реле состоит из двух основных элементов: резервуара и поплавка. Поплавок крепится на шарнире таким образом, что он может двигаться вверх и вниз в зависимости от уровня масла в резервуаре реле. На поплавок установлен ртутный выключатель. Положение выключателя зависит от положения поплавка.

Фото – Защита реле

Нижний элемент состоит из перегородки и ртутного индикатора. Эта пластина крепится плавкими шарнирами прямо напротив входа реле в трансформатор таким образом, что при поступлении масла с высоким давлением происходит его вытеснение. Помимо этих основных элементов реле в нем есть также газовые камеры, провода, клеммы, сигнальные кабеля и т.д.

Помимо этих основных элементов реле, в нем есть также газовые камеры, провода, клеммы, кабеля нейтрали и т.д.

Принцип действия релейной защиты трансформатора очень прост, схема дана ниже. Он является механическим приводом, и всякий раз, когда появляются незначительные внутренние неисправности в трансформаторе, такие как нарушение изоляции, поломка сердечника трансформатора и прочее, падает уровень масла в баке трансформатора, из-за чего ртутный индикатор отключает его от сети питания. Конечно, это не решает проблему, но все же значительно продлевает срок службы кабелей, нормализуя предусмотренный ток в линии.

Фото – Принцип работы

Принцип действия токовой дифференциальной защиты

Как правило, дифференциальная или тепловая защита устанавливается в высоковольтных «сухих» трансформаторах мощностью не более 5MVA с выключателями и контроллерами для защиты от замыканий и перенапряжений.

Фото – Продольная дифференциальная защита

У такой защиты есть определенные преимущества по сравнению с прочими видами:

с помощью реле могут быть обнаружены неисправности в ТМГ изоляционного масла;
дифференциальное реле, как правило, сразу реагирует на любые повреждения цепей, в зависимости от их классификации;
данные защитные устройства могут самостоятельно обнаружить практически все ошибки.

Дифференциальная защита имеет самый простой принцип работы и устанавливается прямо в трансформаторный шкаф. Дифференциальные реле сравнивают между собой первичный и вторичный ток нагрузки, если находят дисбаланс между ними, то срабатывает защита.

Как видите, технологические способы защиты трансформатора основаны на контроле неравенства номинальных показателей. Это может быть уровень масла, тока, напряжения сети и т.д

Особое внимание нужно уделять защите масляных трансформаторов. В частности диагностика параметров с применением микропроцессорных технологий сможет решить многие проблемы

Микропроцессор автоматически контролирует уровень поступающего масла в резервуар. Как только оно достигнет критического уровня, защита отключает питание устройства. Данная технология контроля в основном используется для собственных, распределительных сетей, подстанций, трансформаторов «масляного типа» с мощностью до 10-15 кВ.

Согласно ПУЭ, дистанционная или программная защита трансформатора устанавливается при напряжении сети от 6кВ до нагрузки и от 35кВ после нее, расчет установок производится только квалифицированным работником. Ранее для защиты пользовались вакуумными методиками, но поплавки оказались более действенными, значительно увеличив порог срабатывания защиты.

Купить устройства для защиты трансформаторов можно в любом городе России и Украины: Киеве, Москве, Санкт-Петербурге Вологде. Средняя стоимость – от 8000 рублей.

Виды дифзащиты

Дифзащита бывает продольной и поперечной. Устройства держат под контролем короткие замыкания.

Поперечная

Используется для одновременной защиты нескольких линий электропередач. Принцип работы заключается в сравнении значения нагрузок трансформаторных станций. Поперечная допускает установку ТТ на разных линиях электропередач, которые отходят от одного источника электрического питания.

Токовые цепи подключаются на разные значения линий электропередач. При коротком замыкании на одной из линий нагрузка увеличивается на второй. Реакция прессостата происходит при разных значениях токовой нагрузки на линиях.

Обратите внимание! При срабатывании поперечной дифференциальной защиты обеспечивается возможность самостоятельного определения поврежденного участка обслуживающим персоналом. Дифзащита двигателя

Дифзащита двигателя

Продольная

Этот вид обеспечивает полноценную работу трансформаторных двигателей. Он характеризуется абсолютной селективностью, безотказностью для линий электропередач, которые имеют небольшую длину. Предоставляется возможность применения продольной защиты с другими видами.

Дифзащита сравнивает значения токовых нагрузок, которые протекают на участках линии через устройство. Чтобы замерить силу тока, используются трансформаторные станции. На двух ТТ соединяются цепи точками с прессостатом таким образом, чтобы на него воздействовала разница значений тока.

Продольный вид устройства

В этих схемах может возникать ток небаланса:

  • если появляются намагничивающиеся токи в обмотках трансформаторной станции. Такое случается, если переключить режим хх на полную нагрузку, что приводит к повышению номинального значения;
  • трансформаторная станция не всегда имеет такие же технические характеристики, как ТТ, с которым он работает в паре. Во избежание негативных последствий после выпуска ТТ проводятся испытания, которые определяют наиболее подходящие трансформаторные станции для работы в паре;
  • при отличающихся соединениях обмоток появляются токи небаланса. Уравнять значение электрических токов невозможно, если подбирать витки токовых трансформаторных станций.

К сведению! Устройство компенсации электрического тока небаланса устанавливается в современную микропроцессорную продольную дифференциальную защиту.

Срабатываемое отключение

Преимущества защиты

Среди основных преимуществ газовой защиты трансформатора можно выделить следующие пункты:

  1. Простота устройства данной защиты, а также высокая чувствительность реле.
  2. Количество времени, которое необходимо защите для принятия решения, очень мало. Присутствует возможность выбора между сигналом и отключением, в зависимости от информации о повреждении внутри объекта.
  3. Именно газовая защита считается наиболее чувствительной при защите обмоток трансформатора, а также при замыкании его витков.

Кроме сказанного, можно добавить, что все трансформаторы, мощность которых 1 000 кВт и более, поставляются уже с наличием данного типа защиты. Однако есть небольшой минус, который заключается в том, что газовая защита никак не реагирует на повреждения выводов агрегата, а потому должна комплектоваться второй защитой от внутренних неполадок. К примеру, в трансформаторах малой мощности, такой системой защиты стали МТЗ и токовые отсечки.

Элементы газового реле

Повторимся, что газовая защита трансформатора осуществляется посредством реле. Другими словами принцип действия защиты основан на работе этого устройства. Одним из основополагающих элементов защиты выступают алюминиевые чашки плоскодонного типа, которые осуществляют вращательное движение в такт с контактами подвижного типа, вокруг оси чашки.

Данные провода могут замыкаться с недвижущимися в том случае, если чашки начнут опускаться. А во время правильного процесса эксплуатации (когда объем масла в кожухе реле находится на приемлемом уровне) эти основные элементы защиты удерживаются в определенном положении, при котором они не замыкают ни один из контактов.

При понижении уровня масла в кожухе чашки также начинают опускаться вместе с контактами, которые замыкаются с другими, неподвижными. Причем при небольших повреждениях будет опускаться лишь верхняя чашка, и замыкание ее контактов приведет к тому, что устройство газовой защиты трансформатора подаст лишь сигнал о поломке.

Если интенсивность газообразования высока, то поток масла и газа будут также воздействовать и на лопасть, которая при замыкании контактов вместе с опущенной чашкой вызовет отключение, работающего трансформатора.

При нормальной работе агрегата, скорость масла внутри имеет значения — 0,6/0,9/1,2 м/с. Данный показатель зависит от качества охлаждения объекта. При возникновении неполадки, скорость отклика газовой защиты трансформатора занимает от 0,05 с до 0,5 с. Можно добавить, что на территории Российской Федерации наибольше распространение получило газовое реле с двумя шарообразными пластмассовыми поплавками BF80/Q.

Дифференциальная защита трансформатораДифференциальная защита трансформатора

ДЗШ 110кВ на ПС 220/110/10кВДЗШ 110кВ на ПС 220/110/10кВ

Схема РЗА силового трансформатораСхема РЗА силового трансформатора

Оцените статью
Рейтинг автора
5
Материал подготовил
Илья Коршунов
Наш эксперт
Написано статей
134
Добавить комментарий